

10th Power Analysis & Design Symposium

March 10th, 2021 - Worldwide (Virtual)

Measurement-based Characterization of Passive Electronic Components by Martin Saliternig & Peter Maisel - MSPM Power

HOT IDEAS FOR COOL PRODUCTS

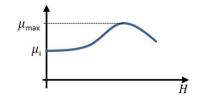
power mechatronics

10th Power Analysis & Design Symposium 2021

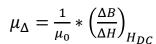
Wednesday, March 10, 2021

Permeability terms I

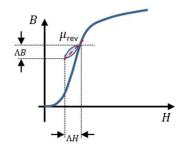
Absolute permeability μ_0 :


permeability in free space, magnetic constant

$$\mu_0 = 4\pi \ 10^{-7} \ \frac{N}{A^2}$$


 \triangleright Relative permeability μ_r : is the characterisation of magnetic materials for all purposes

$$\mu_r = \frac{\mu}{\mu_0} = \frac{1}{\mu_0} * \frac{B}{H}$$


Initial permeability μ_i : is the slope of the initial magnetization curve at the origin when the magnetic field strength H and the magnetic flux density B is very small.

- Maximum permeability $\mu_{\rm max}$: is the maximum permeability along the initial magnetisation curve
- Incremental permeability μ_{Λ} : is the relative permeability for AC magnetisation with superimposed DC magnetisation

Reversible permeability $\mu_{\rm rev}$: is the limiting value of the incremental permeability for very low AC fields $\mu_{rev} = \lim_{\Delta {\rm H} \to 0} \mu_{\Delta}$

Permeabilty terms II

 \triangleright Amplitude permeability μ_a :

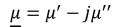
is the relative permeability under alternating external fields H

$$\mu_a = \frac{1}{\mu_0} * \frac{B_{max}}{H_{max}}$$

 \triangleright Effective permeability $\mu_{\rm e}$:

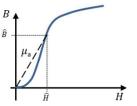
is the total permeability of an air gapped magnetic circuit.

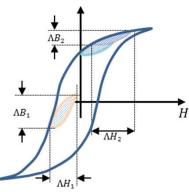
$$\mu_e = \frac{\mu_i}{1 + \frac{l_g * \mu_i}{l_e}}$$


Pulse permeability μ_n :

for pulse (or arbitrary) waveforms the pulse permeability is the ratio of flux density ΔB swing to the corresponding field strength ΔH .

$$\mu_p = \frac{1}{\mu_0} * \frac{\Delta B}{\Delta H}$$


 \triangleright Complex permeability μ :


the ratio of the flux density and the magnetic field strength is a complex number due to the phase shift between B and H in an alternating field.

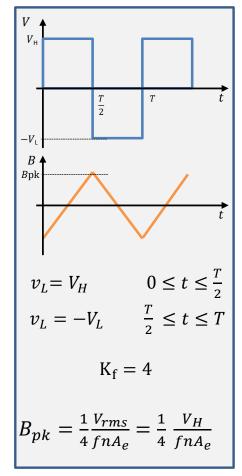
Frequently used: loss angle $tan\delta$

$$tan\delta = \frac{\mu'}{\mu''} = \frac{R}{\omega L}$$

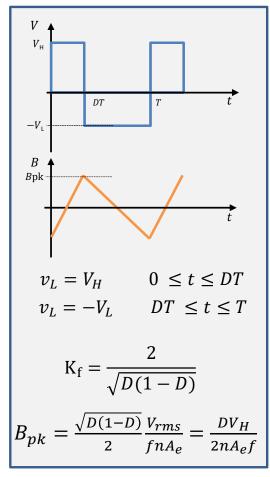
- complete B(H)- loop
- Start Hdc < 0
 - incomplete resetting during pulse
 - Starting from remanence point

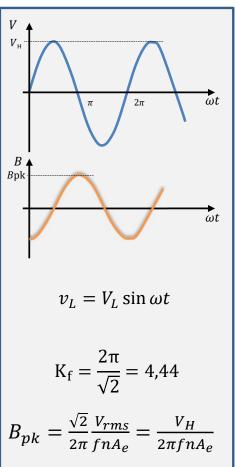
l_g: lenght of air gap

l : lenght of magnetic path


R : real resistance L : inductive part

 ω : circular frequency


Waveforms

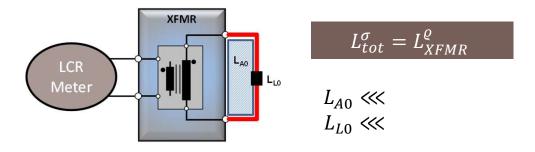

Square wave

Rectangular

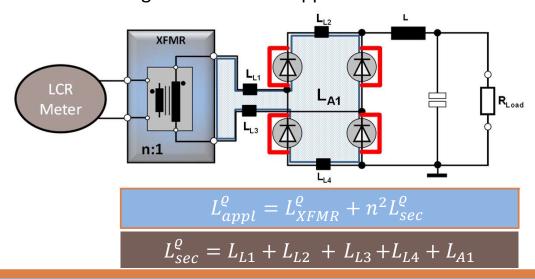
Sinusoidal

K_f: waveform coefficient

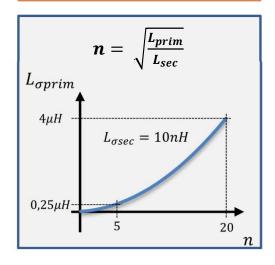
D : duty cycle
B : flux density


f: frequency n: number of windings A_e: cross section area

T : period

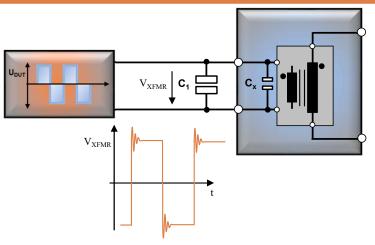

What is the effective leakage inductance?

Effective leakage inductance of the transformer



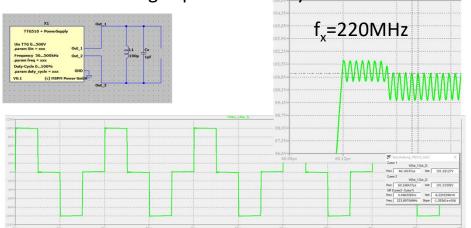
Effective leakage inductance in application circuit

Rule of thumb

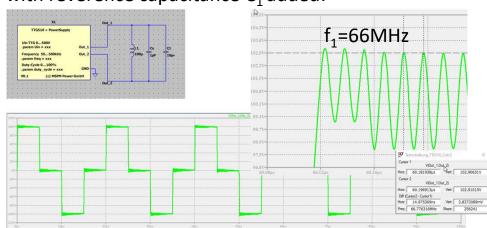

$$L_{\mathrm{L}X} = 5..10nH/cm^{(1)}$$
 $L_{\mathrm{Ax}} \propto \sqrt{A}$

⁽¹⁾ Typical values used on PCBs

Parasitic Intra-Winding Capacitance

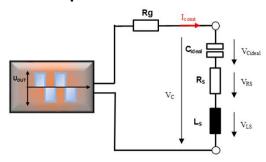

 $f_{x} = \frac{1}{2\pi\sqrt{LC_{x}}}$ $f_{1} = \frac{1}{2\pi\sqrt{L(C_{x} + C_{1})}}$ $C_{x} = \frac{C_{1}}{\left(\frac{f_{x}}{f_{1}}\right)^{2} - 1}$

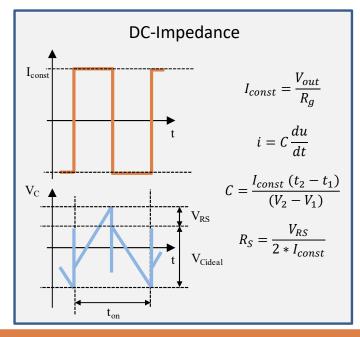
 $\mathbf{C}_{\mathbf{x}}$... Intra winding capacitance $\mathbf{f}_{\mathbf{x}}$...frequency with winding capacitance $\mathbf{C}_{\mathbf{1}}$... reference capacitance $\mathbf{f}_{\mathbf{1}}$...frequency with winding capacitance and


added reverence capacitance

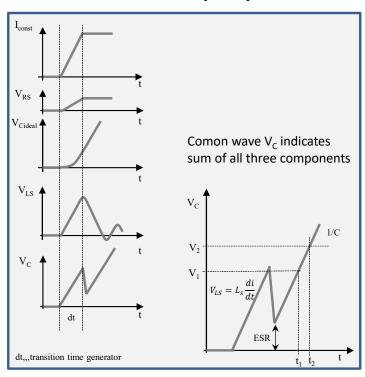
Frequency measurement

with intra winding capacitance only:

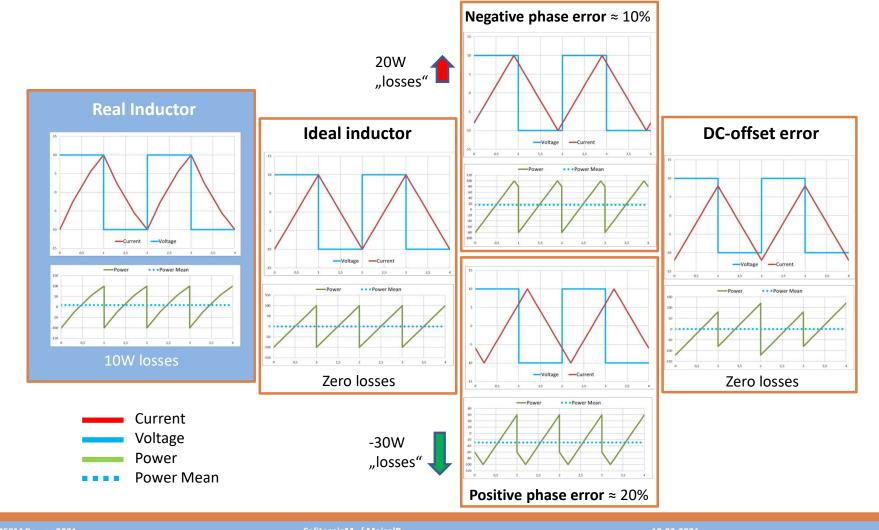

Frequency measurement with reverence capacitance C₁ added:



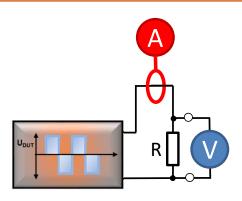
Capacitor DC-Impedance



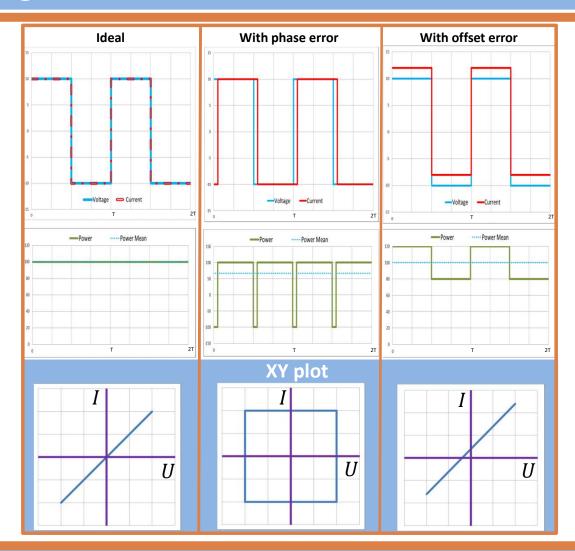
Serial Equivalent Circuit Model


Current step respose

DC-Impedance is more directly related to device behavior in many pulse power applications


Scope measurement I: Offset and Phase error

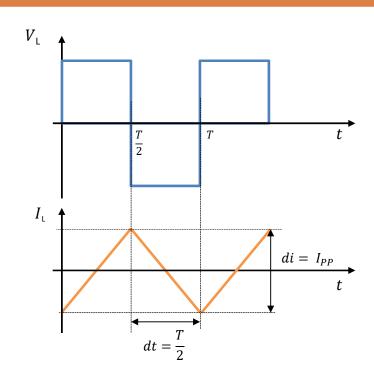
Scope measurement II: Voltage, Current and Time



5V/100mA (1kHz) versus 500V/1A (100kHz)

Future?

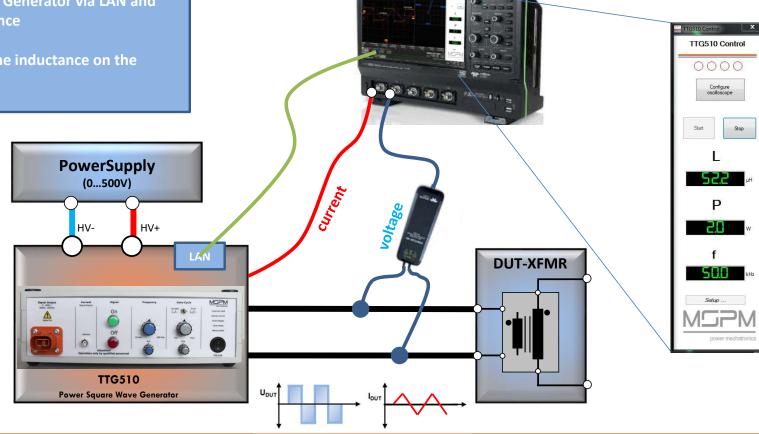
How to calculate L at work



$$U = L \frac{di}{dt}$$
$$di = I_{PP}$$
$$dt = \frac{T}{2}$$

simple scope functions

to inductance



$$L[H] = \frac{\Phi[Vsec]}{I_{PP}[A]} = \frac{V_{rms}}{I_{PP}} \frac{T}{2} = \frac{V_{rms}}{I_{PP}} \frac{1}{2f} = \frac{U dt}{di}$$

RLI - Real Life Inductance and Powerloss measurement

- Inductance measurement under real life conditions
- Scope is used to control the TTG510 Generator via LAN and analyze the measurement data at once
- MSPM App calculates and display the inductance on the screen

Restricted © MSPM Power 2021 SaliternigM. / MaiselP. 10.03.2021 1 10.03.2021

Hardware Architecture
Hardware Design
Feasibility Study
Technology Assessment
Design Reviews
Electrical
Thermal
Mechanical

Device Development
Circuit Diagram and Layout

Digital Power

Application Software Embedded Systems Lab Automation Digital Control VHDL Design

TTG Series

Universal Square Wave Generator

Determination of power losses in magnetic materials Identification of saturation limits in magnetics Identification of the parasitic capacitances Source for inductive power transmission

Source to inject ripple current into components

MSPM Power GmbH

Lenzenbergstrasse 9 91074 Herzogenaurach Germany

Telefon + 49 911 2170 8333 Telefax + 49 911 9232 37 85 Email: info@mspm-power.de

www.mspm-power.de

© 2021 MSPM Power GmbH

Addon: Saturation detection

