IMPEDANCES IN DC-MICROGRIDS FROM OFFLINE TO ONLINE MEASUREMENTS

Raffael Schwanninger: <u>raffael.schwanninger@fau.de</u> Bernd Wunder: <u>bernd.wunder@iisb.fraunhofer.de</u>

Friedrich-Alexander-Universität Technische Fakultät

Agenda

- Introduction to the DC-Mircrogrid
- Opportunities for Impedance Measurements in DC-Microgrids
- Droop-Controlled DC-Microgrids
- Stability Investigation through Impedance Measurements
- Bode 100 Testbench
 - Output-impedance of a constant-current source
 - Output-impedance of a constant-voltage source
 - Output-impedance of a droop-controlled converter
 - Input-impedance of a constant-power load
- Online Measurement with Pseudo-Random-Binary-Sequences
- Advanced Data Analytics for Grid Layout and Stability Optimization
- Stabilization of DC Networks Applying Artificial Intelligence
- Summary

Introduction to the DC-Mircrogrid

 $\textbf{400} \; V_{AC} \; \; \text{AC Grid}$ $\pm 380 \text{ V}_{\text{DC}}$ LVDC Grid (1.600 A backbone) Workplaces Lighting DC DC DC DC DC DC 24/48 V 00:00 00:00 0000 00:00 **Chemical Storage Photovoltaic DC-Charging Office Building Li-Ion Batteries** Electrolyzer ⇒ LOHC ⇒

Fuel Cell

3

Opportunities for Impedance Measurements in DC-Microgrids

LEHRSTUHL

LEISTUNGSELEKTRONIK

FA

Friedrich-Alexander-Universität Technische Fakultät

Impedances in DC-Microgrids - from Offline to Online Measurements

4

Opportunities for Impedance Measurements in DC-Microgrids

Opportunities for Impedance Measurements in DC-Microgrids

- Why online measurements?
 - Real grids are complex
 - Converters are nonlinear
 - Adjustable parameters:
 - Control
 - Mode of operation
 - Controller
 - Digital filter
 - Droop-curve
 - Slope
 - Shape
 - Offset

Agenda

- Introduction to the DC-Mircrogrid
- Opportunities for Impedance Measurements in DC-Microgrids
- Droop-Controlled DC-Microgrids
- Stability Investigation through Impedance Measurements
- Bode 100 Testbench
 - Output-impedance of a constant-current source
 - Output-impedance of a constant-voltage source
 - *Output-impedance of a droop-controlled converter*
 - Input-impedance of a constant-power load
- Online Measurement with Pseudo-Random-Binary-Sequences
- Advanced Data Analytics for Grid Layout and Stability Optimization
- Stabilization of DC Networks Applying Artificial Intelligence
- Summary

IISB

Voltage Control:

- Voltage sources need fine tuning
- Load sharing is nearly impossible with a 12-bit ADC

Master-Slave Control:

- Less communication is required
- Master must be a bidirectional source
- Master must not be turned off

Transition to droop-control:

- No communication is required
- A defined additional resistance helps with load sharing
- > Use a virtual droop-resistance

LEHRSTUHL

EISTUNGSELEKTRONIK

Technische Fakultät

Friedrich-Alexander-Universität

11

💹 Fraunhofer

- Load sharing can be accomplished by droop-curves
- The droop-curve is defined by a small signal R_{Droop}
- For each linear interval *I*₀ can be expressed as:

$$I_O = \frac{U_{Grid} - \tilde{U}_O}{R_{Droop}} + \tilde{I}_O$$

Example (blue curve from 360 V to 400 V)

- Load sharing can be accomplished by droop-curves
- The droop-curve is defined by a small signal R_{Droop}
- Droop-curves can also be nonlinear
- Constant-power-loads have a negative R_{Droop}
- Example (blue curve at 380 V):

$$I_{O} = \frac{P_{O}}{U_{Grid}} = \frac{5 \, kW}{380 \, V}$$
$$R_{Droop} = \frac{U_{Grid}^{2}}{P_{O}} = \frac{(380 \, V)^{2}}{5 \, kW} = 28.88 \, \Omega$$

EHRSTUHL

ISTUNGSELEKTRONIK

Friedrich-Alexander-Universität

Technische Fakultä

💹 Fraunhofer

Small-signal modeling:

- Converter is current controlled
- Converters impedance Z_{conv} can be separated from C₀

Simplified block diagram of a droop controlled converter:

- Measurement filter
- Droop-resistance
- PI-controller
- Buck-converter

Small-signal modeling:

- Converter is current controlled
- Converters impedance can be separated from C₀
- In <u>many</u> cases the current control acts like a low pass of 1st order
- Converter can be modeled as R-L-C

Small-signal modeling:

- Converter can be modeled as R-L-C
 - L is part of the low pass $L_{LP} = \frac{R_{Droop}}{2\pi \cdot f_c}$
 - Resonant circuit has a Quality factor $Q = \frac{1}{R_{Droop}} \sqrt{\frac{L_{LP}}{C_0}} \sim \frac{1}{\sqrt{R_{Droop}}}$

IISB

LEHRSTUHL

EISTUNGSELEKTRONIK

Technische Fakultät

Friedrich-Alexander-Universität

Agenda

- Introduction to the DC-Mircrogrid
- Opportunities for Impedance Measurements in DC-Microgrids
- Droop-Controlled DC-Microgrids
- Stability Investigation through Impedance Measurements
- Bode 100 Testbench
 - Output-impedance of a constant-current source
 - Output-impedance of a constant-voltage source
 - *Output-impedance of a droop-controlled converter*
 - Input-impedance of a constant-power load
- Online Measurement with Pseudo-Random-Binary-Sequences
- Advanced Data Analytics for Grid Layout and Stability Optimization
- Stabilization of DC Networks Applying Artificial Intelligence
- Summary

🖉 Fraunhofer

IISB

Stability Criteria

- Passivity Criterion
- Minor Loop Gain Criterion
 - Middlebrook Criterion
 - Gain-Margin-Phase-Margin
 - **Opposing Argument Criterion**
 - ESAC Criterion
 - **RESC** Criterion

. . .

- **Passivity Criterion**
 - A passive system must have no RHP-poles
 - The phase φ of a passive system must be $-90^{\circ} \leq \varphi \leq 90^{\circ}$
 - Can be used for design of a converter or the whole system

IISB

EHRSTUHL

FUNGSELEKTRONIK

Friedrich-Alexander-Universität

Technische Fakultä

- Minor Loop Gain Criterion
 - Take an initially stable grid
 - Add a new load converter
 - Measure Z_{source} and Z_{load}
 - We apply a MLGC
 - Repeat for every new load

Gain-Margin-Phase-Margin

To form the whole grid *Z*_{source} and *Z*_{load} are paralleled

■ Z_{source} is stable

 $\blacksquare 1 + \frac{Z_{source}}{Z_{load}} must not destabelize$

Frequency (Hz)

- Gain-Margin-Phase-Margin (GM-PM)
 - Compare both *Z*_{source} and *Z*_{load}
 - For each frequency <u>one</u> of two conditions must apply
 - $|Z_{source}| \cdot GM \le |Z_{load}|$
 - $\arg(Z_{source}) (180^{\circ} PM) \le \arg(Z_{source}) \le \arg(Z_{source}) + (180^{\circ} PM)$

EHRSTUHL

Friedrich-Alexander-Universitä

Technische Fakultä

Agenda

- Introduction to the DC-Mircrogrid
- Opportunities for Impedance Measurements in DC-Microgrids
- Droop-Controlled DC-Microgrids
- Stability Investigation through Impedance Measurements
- Bode 100 Testbench
 - Output-impedance of a constant-current source
 - Output-impedance of a constant-voltage source
 - Output-impedance of a droop-controlled converter
 - Input-impedance of a constant-power load
- Online Measurement with Pseudo-Random-Binary-Sequences
- Advanced Data Analytics for Grid Layout and Stability Optimization
- Stabilization of DC Networks Applying Artificial Intelligence
- Summary

Fraunhofer

Friedrich-Alexander-Universität

Technische Fakultä

Bode 100

- Generation of the test signal (max 13dBm)
- Gain-Phase measurement
- Wide Band Amplifier
 - Amplification by 13 dB
 - 0.2 Ω ouput resistance
- Coupling Transformers
 - Isolated coupling
 - Isolated measurement
 - Maximum DC-current:
 - 25 A for 10 Hz-Transformer
 - 50 A for 100 Hz-Transformer

- Passive converter:
 - $\blacksquare \quad C_O \approx 260 \ \mu F$
 - $\blacksquare ESR \approx 20 \ m\Omega$

- Droop-controlled converter
 - Converter can be modeled as R-L-C

- Increase in *R*_{Droop} leads to:
 - Higher Z at low frequencies
 - Lower Z at "resonance frequency"

- Constant-power load (CPL)
 - Typically high R_{Droop}
 - Violates passivity at low frequencies

FA

Technische Fakultät

Friedrich-Alexander-Universität

LEHRSTUHL

LEISTUNGSELEKTRONIK

Fraunhofer

- Constant-current source (CCS)
 - Acts like a passive converter ($R_{Droop} = \infty$)
 - Can not stabilize a constant power load

- Constant-voltage source (CVS)
 - No droop-resistance
 - "Resonance" at lower frequencies

Agenda

- Introduction to the DC-Mircrogrid
- Opportunities for Impedance Measurements in DC-Microgrids
- Droop-Controlled DC-Microgrids
- Stability Investigation through Impedance Measurements
- Bode 100 Testbench
 - Output-impedance of a constant-current source
 - Output-impedance of a constant-voltage source
 - Output-impedance of a droop-controlled converter
 - Input-impedance of a constant-power load
- Online Measurement with Pseudo-Random-Binary-Sequences
- Advanced Data Analytics for Grid Layout and Stability Optimization
- Stabilization of DC Networks Applying Artificial Intelligence
- Summary

Online measurement with Pseudo-Random-Binary-Sequences

- Pseudo-Random-Binary-Sequences (PRBS)
 - Length L
 - **Bit-Duration** τ_B

50

White noise Approximation

100

t (µs)

150

0.2

0

200

Online measurement with Pseudo-Random-Binary-Sequences

- Pseudo-Random-Binary-Sequences (PRBS)
 - Length L
 - **Bit-Duration** τ_B
 - White noise Approximation

$$f_{min} = \frac{1}{\tau_B \cdot L} = \Delta f$$
$$f_{max} \approx \frac{1}{3 \tau_B} \dots \frac{1}{2 \tau_B}$$

Advanced Data Analytics for Grid Layout and Stability Optimization

Impedances in DC-Microgrids - from Offline to Online Measurements

34

IISB

LEHRSTUHL

LEISTUNGSELEKTRONIK

Friedrich-Alexander-Universität

Technische Fakultä

FÜR

Stabilization of DC Networks Applying Artificial Intelligence

© Fraunhofer

LEISTUNGSELEKTRONIK

Friedrich-Alexander-Universität

Technische Fakultä

Summary

- DC-Microgrids
 - Power electronics dominated
 - Droop-controlled
 - Decentral load sharing
- Droop-Control
 - Current controlled converter
 - Droop curves can be linear or nonlinear
 - Constant-power converters have negative droop resistances
- Stability
 - Passivity-Cirterion
 - MLGC-Criterion

- Bode 100 Testbench
 - Bode 100
 - Wide band amplifier
 - Coupling transformer
- PRBS
 - Injection of bit streams
 - Multiple frequencies in one measurement
- Data-Analytics & Al
 - Digital Twin
 - Stability optimization
 - Intelligent DC-Microgrid