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Switch-Mode Power Supply Control Modes
Comparison of typical, analog feedback loop implementations
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• Indirect Control Method

• Universal, Topology-Agnostic*

• Single (uncritical) Feedback Signal

• Applicable for

• Fixed Frequency

• Variable Frequency

• Phase Shift

• Limitations

• Limited System Linearization 

• Varying Impedance

• No Over Current Protection
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Digital Control Scheme
Single Voltage Mode Control Loop
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Switch-Mode Power Supply Control Modes
Comparison of typical, analog feedback implementations

VIN
Power Converter Plant

GP(s)

VOUT

Voltage Feedback Loop

H(z)

Voltage Mode Control
VIN

Power Converter Plant
GP(s)

VOUT

Voltage 

Loop
HV(z)

IL

Ref

Peak Current 

Trigger

S

RQ

Clock

Peak Current Mode Control

VIN

Power Converter Plant
GP(s)

VOUT

Voltage 

Loop
HV(z)

IL

tON

Adaptive Constant On Time

ACOT Block

S

RQ

Clock

ZCD

VIN
Power Converter Plant

GP(s)

VOUT

Voltage 

Loop
HV(z)

IL

VRP

VRV

Hysteretic Mode Control

Hysteric Block

S

RQ

PK

ZCD

• Indirect Control Method

• Universal, Topology-Agnostic*

• Single (uncritical) Feedback Signal

• Applicable for

• Fixed Frequency

• Variable Frequency

• Phase Shift

• Limitations

• Limited System Linearization 

• Varying Impedance

• No Over Current Protection

• Direct Control Method

• Modified Switch-Node Commutation

• Inductor Current Control is Part of Switch 

Node (not the feedback loop)

• Applicable for

• Fixed Frequency

• Variable Frequency

• Phase Shift

• COT and Hysteretic Control Applicable 

for Variable Frequency Only
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Switch-Mode Power Supply Control Modes
Comparison of typical, analog feedback implementations
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Current 

Sense
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• Unfiltered “Open Loop” Adjustment of the Inductor Current

• Injects Noise with every change in reference and load

• Unfiltered PWM Signal Jitter

• Indeterministic Current Limiting

• Requires Synchronous Real Time Current Feedback

Compensator

HC(s)
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Peak Current Modulation
Fixed Frequency Continuous Conduction Operation at DC < 50%
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Peak Current Modulation
Fixed Frequency Continuous Conduction Operation at DC > 50%
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PCMC Current Modulation
Fixed Frequency Continuous Conduction Operation at DC < 50%
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PCMC Current Modulation
Fixed Frequency Continuous Conduction Operation at DC < 50%
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PCMC Current Modulation
Slope Compensation Implentation 
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Response of voltage loop is slowed down with increasing duty cycle.

Side effects: Gain variations and Voltage Droop



12th OMICRON Lab Power Analysis & Design Symposium 2023

Agenda

Power Supply Control Modes

Average Current Mode Control Implementation

Enforced Phase-Locking Method

Summary



12th OMICRON Lab Power Analysis & Design Symposium 202317

Current 

Sense

-180

-120

-60

0

60

120

180

-60

-40

-20

0

20

40

60

10 100 1000 10000 100000

P
h

as
e 

[°
]

M
ag

n
it

u
d

e 
[d

B
]

Frequency [Hz]

Type II Feedback Loop HC(s)

-180

-120

-60

0

60

120

180

-60

-40

-20

0

20

40

60

10 100 1000 10000 100000

P
h

as
e 

[°
]

M
ag

n
it

u
d

e 
[d

B
]

Frequency [Hz]

Open Loop Transfer Function GOL(s)

-180

-120

-60

0

60

120

180

-60

-40

-20

0

20

40

60

10 100 1000 10000 100000

P
h

as
e 

[°
]

M
ag

n
it

u
d

e 
[d

B
]

Frequency [Hz]

Current Mode Plant GP(s)

Digital Control Scheme PCMC
Peak Current Switch-Node Commutation

ADC

VREF

VOUT

error

+
-

𝐻𝐶 𝑧
(Compensator)

input

Plant

GP(s)

output
Anti-

Windup

Voltage 

Divider

Voltage Loop
Clock

QR

S

IL

PWM

IREF

• Unfiltered “Open Loop” Adjustment of the Inductor Current

• Injects Noise with every change in reference and load

• Unfiltered PWM Signal Jitter

• Indeterministic Current Limiting

• Requires Synchronous Real Time Current Feedback
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• Direct Control Method

• Universal, Topology-Agnostic*

• Constant Impedance

• Over Current Protection

• Constant Current Limit

• Applicable for

• Fixed Frequency

• Variable Frequency

• Phase Shift

• Challenges

• Complex Feedback Circuit

Solution



12th OMICRON Lab Power Analysis & Design Symposium 202318
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Digital Control Scheme ACMC
Cascaded Average Current Mode Control Loop(s)
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The average current feedback loop is established by cascading a dedicated voltage and current loop compensator, each tied to 

its respective feedback signal. Just like in peak current mode control, the outer voltage loop compensator output provides the 

reference for the inner current loop, where a second compensation filter adjusts the average inductor current by adjusting the 

modulated switch node control signal.
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Digital Control Scheme ACMC
Step 1: Single Current Loop Controller
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When we measure the inner current loop, we find the current mode plant transfer function 

being almost identical to its peak current mode counter part, mainly shaped by one dominant 

plant pole.
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Digital Control Scheme ACMC
Step #2: Closing the Voltage Loop
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Average Current Mode Step Response
Control Loop Response vs. Output Voltage
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Average Current Mode Step Response
Control Loop Current Response

IL

t
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Digital Control Scheme ACMC
Step #2: Closing the Voltage Loop
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Inductor current responds within one switching cycle while the voltage across the filter 

capacitor responds slower, depending on its size and impedance. Hence, the current loop is 

stimulated by two transients simultaneously with different frequency and phase angle.
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Current Loop Transient Profile
Transient signal waveform when stimulated on Reference and Feedback
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Voltage-to-Current Loop Synchronization
Approach #1: Sample Frequency Decoupling

Voltage 

Divider
ADC

VREF

error
+

-
Compensator

HCV(s)

ADC

IREF

error
+

-
Compensator

HCI(s)
PWM

output

Current Loop

input

input

Anti-

Windup
output

Anti-

Windup
VOUT

Voltage Loop
Current 

Sense

IL

Plant

GP(s)

Transient Injection

Transient Injection

Transient Reception

Sampling FrequencyControl Frequency

Transient Representation

𝑓𝑆𝑉 =
𝑓𝑆𝐼
10

Transient Response

Transient



12th OMICRON Lab Power Analysis & Design Symposium 202326

Transient Reception

Sampling FrequencyControl Frequency

Transient Representation

Voltage-to-Current Loop Synchronization
Approach #1: Sample Frequency Decoupling
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Discrete Time Domain Data Acquisition

• The acquired signal is represented in “instantaneous” steps 

• Signal sampling and conversion invokes phase shift

• The last sample is valid until it is updated by the next sample
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Alias Frequencies
Sufficient Oversampling Ratio (Alias-free Result)
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Alias Frequencies
First Visible Sub-Frequency Component @ fIN  1/8th of fSAMPLE
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Aliasing
Highly distorted Result @ fIN = fNYQUIST = ½ of fSAMPLE
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Aliasing Example

• Once injected, alias frequencies cannot be distinguished from real 

frequencies!
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Voltage-to-Current Loop Synchronization
Approach #1: Sample Frequency Decoupling
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Voltage-to-Current Loop Synchronization
Approach #1: Sample Frequency Decoupling

• Challenges
• Fast current response injects noise into voltage feedback

• High frequency noise must be filtered preventing alias frequencies from affecting  the 

voltage loop, making the voltage loop even slower

• Slow voltage loop response injects step artefacts into output voltage

• Low bandwidth response

• Applicable
• Driving large capacitive loads (e.g. battery chargers)

• Power Factor Correction
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Voltage-to-Current Loop Synchronization
Approach #2: Low Gain Voltage Loop
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Voltage-to-Current Loop Synchronization
Fast Inner Current Loop Open Loop Transfer Function (fX = 10 kHz)
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Voltage-to-Current Loop Synchronization
Slow Outer Voltage Loop Open Loop Transfer Function (fX = 1.2 kHz)

  = 58°

GM = -28 dB

m = -26 dB/dec

EPC9151, 300 W 16th Brick Power Module

2-Phase Interleaved Buck Converter

fSW = 250 kHz 

EPC9151
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Voltage-to-Current Loop Synchronization
Approach #2: Low Gain Voltage Loop

• Results
• Very good high frequency noise rejection without additional filtering

• Minimum perturbation of current reference

• Low bandwidth response

• Applicable
• Battery chargers

• LED Drivers

• Low-Performance DC/DC Converters

• Power Factor Correction
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Kuramoto Synchronization *
Approach #3: Enforced Phase-Locking Method

• *This is not a Kuramoto model implementation but warm 

Thank You to Yoshiki Kuramoto for pointing us into the right 

direction

• And to OMCRON Lab giving us the tool we needed to work out 

how to implement it ☺

• The Kuramoto model in Mechanics describes the 

synchronization of a large set of coupled oscillators.

• Famous example: self-synchronization of metronomes 

swinging at different frequencies being forced into 

synchronization by being coupled through a moving base.
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“Kuramoto” Synchronization*
Approach #3: Enforced, Full Phase-Locking

• *This is not a full Kuramoto model implementation but warm 

Thank You to Yoshiki Kuramoto for pointing us into the right 

direction

• And to OMCRON Lab giving us the tool to work out how to 

implement it ☺

• The Kuramoto model in Mechanics describes the 

synchronization of a large set of coupled oscillators.

• Famous example: self-synchronization of metronomes 

swinging at different frequencies being forced into 

synchronization by being coupled through a moving base.

*Screenshot of animation on Wikipedia

Nil, partial and full phase-locking in an all-to-all network of Kuramoto oscillators. Phase-

locking is governed by the coupling strength K and the distribution of intrinsic frequencies 

. Here, the intrinsic frequencies were drawn from a normal distribution (M=0.5Hz, 

SD=0.5Hz). The yellow disk marks the phase centroid. Its radius is a measure of 

coherence.
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“Kuramoto” Synchronization*
Approach #3: Enforced, Full Phase-Locking

• *This is not a full Kuramoto model implementation but warm 

Thank You to Yoshiki Kuramoto for pointing us into the right 

direction

• And to OMCRON Lab giving us the tool to work out how to 

implement it ☺

• The Kuramoto model in Mechanics describes the 

synchronization of a large set of coupled oscillators.

• Famous example: self-synchronization of metronomes 

swinging at different frequencies being forced into 

synchronization by being coupled through a moving base.

*Screenshot of animation on Wikipedia

Nil, partial and full phase-locking in an all-to-all network of Kuramoto oscillators. Phase-

locking is governed by the coupling strength K and the distribution of intrinsic frequencies 

. Here, the intrinsic frequencies were drawn from a normal distribution (M=0.5Hz, 

SD=0.5Hz). The yellow disk marks the phase centroid. Its radius is a measure of 

coherence.

Does not apply for power supplies as the plant is not a 

strong coupling medium. 

But is there another way to enforce full phase-locking?
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Plant

Alternate Current Plant Measurement
Current Plant seen from Voltage Loop
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Enforced Phase-Locking Method
Results: Voltage Response of Current Loop Plant

4.7 kHz

• Phase angle = 90° @ fR LC

• One pole at fR LC

2

90°

When current loop gain is too high, 

loop generates sub-harmonics 

slightly above 

fSAMP/[Length of Error History]

85 kHz

1

Voltage Loop Compensation

• Type II (2P2Z) Compensator

• Zero Location < 4.7kHz (Compensating Pole)

• Pole Location < 60 kHz (Suppressing High Frequency Oscillations)
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Plant

Alternate Current Plant Measurement
Current Plant seen from Voltage Loop
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Enforced Phase-Locking Method
Average Current Mode Control Open Loop Transfer Function Results

8 kHz

75°

53°

-11dB

-8dB
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Enforced Phase-Locking Method
Wrap-Up

• Most Recent Results
• Enforced Phase-Locking of Voltage and Current loop result in a stable and reliable system

• As a result, Current Loop is slower than the Voltage Loop

• Until today, results only verified on forward-type converters with fast current sense circuits

• Future Work
• Evaluation of application in other topology types 

• Evaluation of impact of current feedback bandwidth/phase shift limitations
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Summary
• Average Current Mode Control is a universal control mode applicable in
• Constant Current and Constant Voltage Sources

• PFC and DC/DC Converters

• Battery Chargers & LED Drivers

• Allows current-oriented control algorithms (e.g. MPPT, Bidirectional Control)

• Sustained Current Limit capability

• Less restrictive on current feedback quality 

(simplifies current sense circuits)

• Higher CPU load in digital control loop implementations

• Classic configurations have limited bandwidth

• Promising: Phase-Locking may be key to mitigate bandwidth limitations
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Q & A
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Thank You!
May the power be with you!
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