

Control Methods of LLC Converters

Christophe Basso

Business Development Manager

IEEE Senior Member

12th Power Analysis & Design Symposium March 15th, 2023 - Live Virtual Event

Register now!

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Hard-Switching Operations without Parasitics

A switching circuit without parasitics operates safely within maximum ratings

UTURE

Overlap between current and voltage
is minimum and keeps switching losses low

Parasitics degrade Switching Performance

FURE

OFF

Parasitics add oscillatory phenomena and safe limits can be violated

Switching losses scale up with frequency

300 V

Voltage Excursion must be Clamped

Dampers and snubbers efficiently calm down oscillations

The voltage excursion is back into the SOA

Power dissipation is still there with dampers

Resonant Waveforms Smooth Switching Events

Quasi-resonance operation brings near-zero-voltage transition

✓ The overlap I-V has disappeared, and turn-off loss is 0 W
The oscillation involving L_m ensures C_r discharge to 0 V

FUTURE

✓ Zero-voltage switching cancels turn-on loss

Soft Switching Definitions – ZVS

Zero-voltage switching or ZVS implies a switch turned on with 0 V across its terminals

Soft Switching Definitions – ZCS

Zero-current switching or ZCS implies a turn-off mechanism initiated at zero current

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

- The LLC converter is a member of the series-resonant converters family
- > The magnetizing inductance L_m is part of the resonating elements (L)
- > The transformer leakage inductance or an extra inductor forms the term L_s (L)
- > A series capacitor C_s is inserted to form the complete resonant converter (C)

The Benefits of the LLC Converter

- The LLC converter offers soft-switching conditions in normal-load conditions
- ✓ Zero-voltage switching (ZVS) for the switches in the primary side
- ✓ Zero-current switching (ZCS) for the secondary-side diodes
- It can operate at high switching frequency to build compact converters
- ✓ Perfect for flat-panel displays like LCD TVs, game stations, servers power supplies

- ✓ Three energy-storing elements, C_r , L_r and the transformer magnetizing inductance L_{mag}
- ✓ Components count is limited especially if integrated magnetics is adopted

Different Configurations for the LLC - Primary

The LLC converter can be operated in half- or full-bridge configuration

- Power up to 600 W
- Robust version with clamp diodes
- ✓ Lower input ripple current
- ✓ Half rms current in a capacitor

Power beyond 1 kW

JTURE

✓ Diagonal conduction

Different Configurations for the LLC - Secondary

A full-bridge rectifier requires diodes with a lower breakdown voltage

- Two separate windings
- BV > 2V_{out}
- Secondary leakage brings current imbalance
- Synchronous rectification

- One single winding
- BV > V_{out}
- No current imbalance

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Voltage-Mode Control

- An LLC converter is typically operated from a 50% high-voltage square waveform
- > The power flow is then adjusted by varying the switching frequency
- > Soft-switching on MOSFETs and diodes depends on frequency with respect to f_s

The Resonance varies with the Output Power

The LLC converter is a multi-resonance converter depending on operating conditions
In heavy-load condition, L_s dominates the resonant tank as L_m is shunted by R_{ac}
In lighter-load operations, L_m and L_s together set the resonant frequency

The converter is modeled using the first harmonic approximation or FHA

Output Voltage of an LLC Converter

The equivalent network is fed by the square-wave fundamental value according to FHA
✓ Determine the output voltage with the transfer function of the 3rd-order network

A Complex Input Impedance

The impedance offered by the network to the half-bridge shows two main zones:

Where to Operate the Converter?

Plotting the dc transfer characteristic of the LLC network reveals several points

- ✓ As load current decreases, L_m enters the picture and brings a second peak
- ✓ An impedance plot shows socalled *capacitive* and *inductive* regions
- ✓ The inductive region brings ZVS on power MOSFETs and ZCS on output diodes
- ✓ ZCS on MOSFETs is occurring in the capacitive region but the control law changes!

Observing Waveforms tells us the Operating Region

• Resonating current i_r is a perfect sinewave when LLC operates at resonant frequency

Ensuring Zero-Voltage Switching

- The deadtime duration must be sufficiently long to discharge parasitics
- ✓ Select primary inductance so that magnetizing current ensures ZVS at the highest F_{sw}

The Right DeadTime for ZVS Conditions

Calibrate deadtime to minimize body diode conduction time whilst ensuring ZVS

ZVS gets rid of the Miller plateau and further minimizes drive losses

SIMPLIS can simulate GaN Transistors

Adding GaN transistors to the schematic capture is an easy process

Simulation confirms ZVS with a Reduced Dead Time

• A smaller C_{oss} for the GaN leads to a lower magnetizing current for improved efficiency

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Controlling the LLC Converter

- We have seen that changing the switching frequency affects the output power
- ➢ If a regulation loop drives a voltage-controlled oscillator (VCO), output power is adjusted
- > The frequency varies from a min value (high power) to a maximum high value (light load)

A dead time is set to avoid shoot-through currents but also ensures ZVS operation

Transfer Function in Voltage-Mode Control

- There is no averaged model for the LLC because energy is transported by fundamental > The control-to-output transfer function complicates proper compensation: \checkmark The transfer function is a 3-pole system for $F_{sw} \neq F_o$ – dominant LF pole, one pole pair
- \checkmark The transfer function becomes a 2-pole system when $F_{sw} \approx F_{a}$

- $K_{\rm vf}$ is a gain proportional to slope at the considered
- capacitance and also moves with operating conditions
- The output capacitor and its ESR contribute the zero ω_{r}

Compensating the LLC operated in voltage-mode is not a dinner party!

Simulating the LLC Converter

A program like SIMPLIS lends itself perfectly for assessing the ac response of the LLC

- A very simple setup is sufficient to obtain the transfer function
- The operating point is automatically set depending on V_{in} and P_{out}
- Frequency is recorded to see where the LLC stands at a given operating point.

$$L_r := 100 \mu H$$
 $L_m := 500 \mu H$ $C_r := 36 n F$

$$f_{o} := \frac{1}{2 \cdot \pi \cdot \sqrt{L_{r} \cdot C_{r}}} = 83.882 \text{kHz}$$
$$f_{o2} := \frac{1}{2 \cdot \pi \cdot \sqrt{(L_{r} + L_{m}) \cdot C_{r}}} = 34.245 \text{kHz}$$

Various Small-Signal Responses

At a 350-V input voltage with two different loads, the shape changes considerably

Control-to-Output Transfer Function – Variable Load

Control-to-Output Transfer Function – Variable Input

A Type 3 for Compensation

- Considering the deep phase lag, a type 3 compensator is needed
- The resonant peak occurs below 2 kHz implying a crossover at 4-5 kHz

SIMPLIS automates the poles-zeroes positions and components values

Always Check the Operating Point!

- The operating point will tell you if the converter regulates correctly
- It is important to check this point otherwise the ac analysis can be useless

Good Compensation at a 350-V Input Voltage

The simulation reveals a good loop gain meeting the wanted crossover and phase margin

Simulating the Entire Converter

The simulation reveals a good loop gain meeting the wanted crossover and phase margin

Large Variations of Loop Gain

Changing operating conditions affect crossover and phase margin

> At low line, frequency variations are moderate, operations close to resonance

> At high line, frequency variations are large, operations above resonance

Closed-Loop Operation with Analogue Compensation

Transient response at V_{in} = 340 V and P_{out} stepped from 240 W to 480 W with a 1-A/µs slope

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Charge Control Operations

Z. Hu et al., Bang-Bang Charge Control for LLC Resonant Converters, IEEE Transactions on Power Electronics, 2015, Vol. 30, Issue 2

 \succ The feedback loop can set the peak voltage and deduce the valley voltage

$$V_{C_r}(t_1) = k_{sen}V_{in} - V_{C_r}(t_2)$$

valley peak

Resonant

Practical Implementation with TEA2017

NXP's combo controller implements a proprietary bang-bang charge control scheme

- Absorbing current from the feedback pin adjusts resonating peak voltage setpoints
- The optocoupler average current is regulated at 80 μA for best standby power

Modeling the Modulator Section

A SIMPLIS model helps understand how setpoints are modulated in values

The modulator imposes a small-signal gain

$$G = \frac{\Delta V_{SET}}{\Delta I_{FB}}$$

An Easier-to-Compensate Converter

The charge control scheme simplifies the control-to-output transfer function

A 12-V/50-A Demonstration Board

Typical application of the TEA2017 in a 600-W demonstration board – UM11613

GreenChip

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Integrating the Primary Current

- Fairchild now onsemi patented a technique based on charge control
- > The resonating current is integrated and supplemented with an artificial ramp
- The resulting waveform is then classically compared with the error voltage

A current transformer provides the current information

Checking the Frequency Response

- It is possible to run a SIMPLIS simulation with the same LLC converter
- The converter is stabilized to crossover at 1 kHz with a 70° phase margin

An Easier-to-Compensate Converter

The frequency response, regardless of the input voltage or the load does not change
Phase margin is comfortable and obtained with a simple type 2 compensator

High-Power Half- or Full-Bridge Control

https://www.onsemi.com/pub/collateral/evbum2726-d.pdf

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Current-Mode Control Operations

- The NCP13992 observes the resonating current integrated by capacitor C_r
- A cycle-by-cycle control adjusts the on-time to meet the peak current setpoint
- > A digital core mirrors the on-time with a 10-ns resolution to drive the low-side switch

A digital core replicates t_{on} for an exact 50% operation

Ac Response of the Current-Mode-Controlled LLC

- It is possible to emulate the on-time replication via an analogue subcircuit
- > Symmetry between timings is obtained with a simple capacitor-based ramp generator

 A type 2 compensator is sufficient VIN

 Current reading requires a simple capacitive divider

FUTURE

ELECTRONICS

A Stable Response across all Operating Conditions

- The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin
- Despite line and load variations, the loop gain remains similar

Loop gain, different input voltages

Loop gain, different output currents

Typical Application Schematic of NCP13992

The part observes the resonating current via a capacitive differentiator on pin CS

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

Time-Shift Control of LLC Converters

- The controller inserts a pause before the 0-A crossing point of the resonating current
- > For ZVS operations, the resonant current lags the half-bridge voltage
- The feedback loop modulates the delay and adjusts the output power

Modifying the Frequency Modulator

- It is possible to insert a delay by pausing the charge/discharge current
- The pause duration depends on the resonating current approaching the 0-A point

Internal Circuitry for the Half-Bridge Driver

The STCMB1 features automatic dead-time management for ZVS operation

SIMPLIS Simulation of the Time-Shifted-Controlled LLC

- A delay is inserted by modulating the charge/discharge current of the timing capacitor
- The feedback current modulates the delay and the switching frequency indirectly

✓ A simple type 2 compensator is enough to stabilize the converter

✓ Current sensing can be implemented via a simple resistance or a capacitive divider

Typical Operating Waveforms

• The pause in the charge/discharge process is clearly visible in this 36-V LLC converter

time/uSecs

Time-Shift-Controlled Compensated LLC Converter

- The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin
- The response is stable at various conditions but shows some variability in crossover

Loop gain, different input voltages

Loop gain, different output currents

ELECTRONICS

Combining LLC Control and PFC in a Combo Chip

The controller includes a PFC and the time-shift control section

Agenda

- Hard and Soft Switching
- What is an LLC Converter?
- Controlling the Switching Frequency
- Closing the Loop
- Charge-Controlled Operation I
- Charge-Controlled Operation II
- Current-Mode Control
- Time-Shift Control
- An Overview of Available LLC Controllers

An Overview of Commercially-Available LLC Controllers

Part- Number	High- Voltage Drivers	Variable- Frequency Control	Charge Control	Current- Mode Control	Time- Shifted Control	Combo LLC+PFC	Package	Brand
NCP13992	\checkmark			\checkmark			SO-16	onsemi
NCP4390			\checkmark				SO-16	onsemi
TEA2017	\checkmark		\checkmark			\checkmark	SO-16	NP
TEA19161	\checkmark		\checkmark				SO-16	NP
STCMB1	\checkmark				\checkmark	\checkmark	SO-20W	life.augmented
L6699	\checkmark	\checkmark					SO-16	life.augmented
HR1002A	\checkmark	\checkmark					SO-16	mes
HR1211	\checkmark			\checkmark		\checkmark	SO-20	mes
ICE2HS01G		\checkmark					SO-20	Cinfineon
IRS27951	\checkmark	\checkmark					SO-8	infineon

Conclusion

- It is difficult and perilous to maintain a safe phase margin depending on conditions
- Crossover frequency is constrained to modest values
- The charge-controlled LLC converter offers a simpler and predictable ac response
- A simple type 2 compensator is enough to ensure reliable operations
- > High crossover frequencies become possible with good margins
- Variations around this theme exist and bear different names
- Current-mode control also exists and offers interesting characteristics
- Time-shifted-controlled LLC brings a different scheme and simplifies compensation