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Hard-Switching Operations without Parasitics

 A switching circuit without parasitics operates safely within maximum ratings

 Overlap between current and voltage

is minimum and keeps switching losses low
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Parasitics degrade Switching Performance

 Parasitics add oscillatory phenomena and safe limits can be violated
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 Leakage inductance brings the vDS outside 
of the safe operating area

 Switching losses scale up with frequency



Voltage Excursion must be Clamped
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 Dampers and snubbers efficiently calm down oscillations

 The voltage excursion is back into the SOA

 Power dissipation is still there with dampers



Resonant Waveforms Smooth Switching Events

 Quasi-resonance operation brings near-zero-voltage transition
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Soft Switching Definitions – ZVS

 Zero-voltage switching or ZVS implies a switch turned on with 0 V across its terminals
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Soft Switching Definitions – ZCS

 Reverse recovery occurs when the diode is hard-blocked by a negative voltage
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 The LLC converter is a member of the series-resonant converters family

 The magnetizing inductance Lm is part of the resonating elements (L)

 The transformer leakage inductance or an extra inductor forms the term Ls (L)

 A series capacitor Cs is inserted to form the complete resonant converter (C)

What is an LLC Converter?
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The Benefits of the LLC Converter

 The LLC converter offers soft-switching conditions in normal-load conditions

 Zero-voltage switching (ZVS) for the switches in the primary side

 Zero-current switching (ZCS) for the secondary-side diodes

 It can operate at high switching frequency to build compact converters

 Perfect for flat-panel displays like LCD TVs, game stations, servers power supplies

 Three energy-storing elements, 
Cr, Lr and the transformer 
magnetizing inductance Lmag

Components count is limited 
especially if integrated magnetics 
is adopted
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Different Configurations for the LLC - Primary

 The LLC converter can be operated in half- or full-bridge configuration
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 Power up to 600 W  Robust version with clamp diodes

Lower input ripple current

 Half rms current in a capacitor

 Power beyond 1 kW

 Diagonal conduction



Different Configurations for the LLC - Secondary

 A full-bridge rectifier requires diodes with a lower breakdown voltage

 Two separate windings

 BV > 2Vout

 Secondary leakage 
brings current imbalance

 Synchronous 
rectification

 One single winding

 BV > Vout

 No current imbalance
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 An LLC converter is typically operated from a 50% high-voltage square waveform

 The power flow is then adjusted by varying the switching frequency

 Soft-switching on MOSFETs and diodes depends on frequency with respect to fs

Voltage-Mode Control

o Capacitor stress
o OVP can be triggered
o Poor stabilization time
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 The LLC converter is a multi-resonance converter depending on operating conditions

 In heavy-load condition, Ls dominates the resonant tank as Lm is shunted by Rac

 In lighter-load operations, Lm and Ls together set the resonant frequency

The Resonance varies with the Output Power
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Output Voltage of an LLC Converter

 The equivalent network is fed by the square-wave fundamental value according to FHA

 Determine the output voltage with the transfer function of the 3rd-order network
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A Complex Input Impedance

 
min

1

2 s m s

F
L L C




Capacitive
region

Inductive
region

Pout = 300 W, Q = 2

Pout = 200 W, Q = 3

Pout = 100 W, Q = 6.7

Pout = 50 W, Q = 13

Pout = 10 W, Q = 60

Lm = 600 µH
Ls = 100 µH
Vout = 24 V
Cs = 33 nF
N = 8

A

(dB)

10k 20k 50k 200k

14.0

26.0

38.0

50.0

62.0

sC
sL

mL

acR 2Z s

 1Z s TI s

 TV s

 
 
 

T

in

T

V s
Z s

I s


Impedance of the series resonant network

 The impedance offered by the network to the half-bridge shows two main zones:

 A capacitive region:

 An inductive region:
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 Plotting the dc transfer characteristic of the LLC network reveals several points

Where to Operate the Converter?

As load current decreases, Lm

enters the picture and brings a 
second peak

An impedance plot shows so-
called capacitive and inductive
regions

 The inductive region brings ZVS 
on power MOSFETs and ZCS on 
output diodes

 ZCS on MOSFETs is occurring in 
the capacitive region but the 
control law changes!
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Observing Waveforms tells us the Operating Region

 Resonating current ir is a perfect sinewave when LLC operates at resonant frequency
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Ensuring Zero-Voltage Switching

 The deadtime duration must be sufficiently long to discharge parasitics

 Select primary inductance so that magnetizing current ensures ZVS at the highest Fsw
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The Right DeadTime for ZVS Conditions

 Calibrate  deadtime to minimize body diode conduction time whilst ensuring ZVS

 GSv t
Miller effect

No ZVS

No Miller 
plateau: ZVS!

ZVS gets rid of the Miller plateau and further minimizes drive losses



SIMPLIS can simulate GaN Transistors

 Adding GaN transistors to the schematic capture is an easy process
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Simulation confirms ZVS with a Reduced Dead Time

 A smaller Coss for the GaN leads to a lower magnetizing current for improved efficiency

Low-side drive

High-side drive

ZVS ZVS

Magnetizing current

DT=30 ns

Bridge voltage
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 We have seen that changing the switching frequency affects the output power

 If a regulation loop drives a voltage-controlled oscillator (VCO), output power is adjusted

 The frequency varies from a min value (high power) to a maximum high value (light load)

Controlling the LLC Converter

 A dead time is set to avoid shoot-through currents but also ensures ZVS operation

Sweeps between 0 to 5 V
and from 120 kHz to 350 kHz
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 There is no averaged model for the LLC because energy is transported by fundamental

 The control-to-output transfer function complicates proper compensation:

 The transfer function is a 3-pole system for Fsw  Fo – dominant LF pole, one pole pair

 The transfer function becomes a 2-pole system when Fsw  Fo

Transfer Function in Voltage-Mode Control
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 Kvf is a gain proportional to slope at the considered 
operating point on the voltage curve

 The quality factor Q and the double-pole beat 
frequency vary with operating conditions

 The low-frequency pole p is linked to the output 
capacitance and also moves with operating conditions

 The output capacitor and its ESR contribute the zero z

Compensating the LLC operated in voltage-mode is not a dinner party!

J. Jang et al., Dynamic Analysis and Control Design of Optocoupler-Isolated LLC Series Resonant Converters with Wide Input and Load Variations, 2009 IEEE Energy Conversion Congress and Exposition



 A program like SIMPLIS lends itself perfectly for assessing the ac response of the LLC

Simulating the LLC Converter
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 A very simple setup is sufficient to 
obtain the transfer function

 The operating point is 
automatically set depending on 
Vin and Pout

 Frequency is recorded to see 
where the LLC stands at a given 
operating point.
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 At a 350-V input voltage with two different loads, the shape changes considerably

Various Small-Signal Responses
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Control-to-Output Transfer Function – Variable Load



Control-to-Output Transfer Function – Variable Input



 Considering the deep phase lag, a type 3 compensator is needed

 The resonant peak occurs below 2 kHz implying a crossover at 4-5 kHz

A Type 3 for Compensation
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Always Check the Operating Point!

 The operating point will tell you if the converter regulates correctly

 It is important to check this point otherwise the ac analysis can be useless
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 The simulation reveals a good loop gain meeting the wanted crossover and phase margin

Good Compensation at a 350-V Input Voltage
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Simulating the Entire Converter

 The simulation reveals a good loop gain meeting the wanted crossover and phase margin

 All the compensation 
parameters are 
automatically calculated

 Easy to change strategy 
and see the effects

Full-bridge



 Changing operating conditions affect crossover and phase margin

Large Variations of Loop Gain

Low-line operations, Vin = 350 V dc High-line operations, Vin = 420 V dc
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 At low line, frequency variations are moderate, operations close to resonance

 At high line, frequency variations are large, operations above resonance
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Transient response at Vin = 340 V and Pout stepped from 240 W to 480 W with a 1-A/µs slope

Closed-Loop Operation with Analogue Compensation
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 The voltage across the resonant capacitor is the integral of the resonant tank current

Charge Control Operations

Z. Hu et al., Bang-Bang Charge Control for LLC Resonant Converters, IEEE Transactions on Power Electronics, 2015, Vol. 30, Issue 2
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 In a half-bridge topology, the average voltage across the resonating capacitor is

 Owing to symmetry of the waveform, we can define the two voltages 

Adjusting the Output Power
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 The feedback loop can set the peak voltage and deduce the valley voltage

   1 2r rC sen in CV t k V V t 
valley peak



 NXP’s combo controller implements a proprietary bang-bang charge control scheme

Practical Implementation with TEA2017

 Absorbing current from the feedback pin adjusts resonating peak voltage setpoints

 The optocoupler average current is regulated at 80 µA for best standby power

Low power
High power

setpoints



 A SIMPLIS model helps understand how setpoints are modulated in values

Modeling the Modulator Section
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 The charge control scheme simplifies the control-to-output transfer function

An Easier-to-Compensate Converter
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A 12-V/50-A Demonstration Board

 Typical application of the TEA2017 in a 600-W demonstration board – UM11613

Compensated divider

Resonant
capacitor
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 Fairchild – now onsemi – patented a technique based on charge control

 The resonating current is integrated and supplemented with an artificial ramp

 The resulting waveform is then classically compared with the error voltage

Integrating the Primary Current

A current transformer provides the current information

https://www.onsemi.com/products/power-management/ac-dc-power-conversion/offline-controllers/ncp4390

NCP4390



 It is possible to run a SIMPLIS simulation with the same LLC converter

 The converter is stabilized to crossover at 1 kHz with a 70° phase margin

Checking the Frequency Response



 The frequency response, regardless of the input voltage or the load does not change

 Phase margin is comfortable and obtained with a simple type 2 compensator

An Easier-to-Compensate Converter
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High-Power Half- or Full-Bridge Control

 The controller is located in the secondary side for easier synchronous rectifiers control

NCP4390 Direct observation of Vout

 Directly drives sync rectifies with 
the appropriate timing

 Can easily drive a full-bridge LLC

 Need transformers to drive and 
bring primary current to sec. side

FAN3225

https://www.onsemi.com/pub/collateral/evbum2726-d.pdf
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 The NCP13992 observes the resonating current integrated by capacitor Cr

 A cycle-by-cycle control adjusts the on-time to meet the peak current setpoint

 A digital core mirrors the on-time with a 10-ns resolution to drive the low-side switch

Current-Mode Control Operations

Counter

Hi-frequency
clock

D0 Dn

Digitized ton

duration

stop
+

-

 CSv t

 errv t

Next cycle

reset

A digital core replicates ton for an exact 50% operation

https://www.onsemi.com/products/power-management/ac-dc-power-conversion/offline-controllers/ncp1399



 It is possible to emulate the on-time replication via an analogue subcircuit

 Symmetry between timings is obtained with a simple capacitor-based ramp generator

Ac Response of the Current-Mode-Controlled LLC
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• A type 2 compensator is 
sufficient

• Current reading 
requires a simple 
capacitive divider



 The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin

 Despite line and load variations, the loop gain remains similar

A Stable Response across all Operating Conditions

7.2 AoutI 
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350 V

m

cf

420 V

350 V

Loop gain, different input voltages
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Loop gain, different output currents
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Typical Application Schematic of NCP13992

 The part observes the resonating current via a capacitive differentiator on pin CS
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Time-Shift Control of LLC Converters

 The controller inserts a pause before the 0-A crossing point of the resonating current

 For ZVS operations, the resonant current lags the half-bridge voltage

 The feedback loop modulates the delay and adjusts the output power

C. Adragna et al., Digital Implementation and Performance Evaluation of Time-Shift-Controlled LLC Resonant Half-Bridge Converter, Applied Power Electronics Conference, Fort Worth, 2014



Modifying the Frequency Modulator

 It is possible to insert a delay by pausing the charge/discharge current

 The pause duration depends on the resonating current approaching the 0-A point

+

-

CMP

charge

discharge
3 V/1 V

Add extra 
logic gates

 50% duty ratio naturally guaranteed

 Need to set the min/max switching frequencies

Vdd

STCMB1



Internal Circuitry for the Half-Bridge Driver

 The STCMB1 features automatic dead-time management for ZVS operation



SIMPLIS Simulation of the Time-Shifted-Controlled LLC

Time-shifted oscillator Deadtime
generation

Current modulation

 A delay is inserted by modulating the charge/discharge current of the timing capacitor

 The feedback current modulates the delay and the switching frequency indirectly

 A simple type 2 compensator is enough to stabilize the converter

 Current sensing can be implemented via a simple resistance or a capacitive divider

36 V/7 A



Typical Operating Waveforms

 The pause in the charge/discharge process is clearly visible in this 36-V LLC converter

0 A
 

tCi t

 Cv t

0 A 0 A ri t

Timing capacitor
current

wait

wait
FBI



Time-Shift-Controlled Compensated LLC Converter

 The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin

 The response is stable at various conditions but shows some variability in crossover
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Combining LLC Control and PFC in a Combo Chip

 The controller includes a PFC and the time-shift control section
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An Overview of Commercially-Available LLC Controllers

BrandPackage
Combo 
LLC+PFC

Time-
Shifted 
Control

Current-
Mode 

Control

Charge 
Control

Variable-
Frequency 

Control

High-
Voltage 
Drivers

Part-
Number

SO-16NCP13992

SO-16NCP4390

SO-16TEA2017

SO-16TEA19161

SO-20WSTCMB1

SO-16L6699

SO-16HR1002A

SO-20HR1211

SO-20ICE2HS01G

SO-8IRS27951



Conclusion

 An LLC converter operated in variable-frequency mode exhibits a complicated ac response

 It is difficult and perilous to maintain a safe phase margin depending on conditions

 Crossover frequency is constrained to modest values

 The charge-controlled LLC converter offers a simpler and predictable ac response

 A simple type 2 compensator is enough to ensure reliable operations

 High crossover frequencies become possible with good margins

 Variations around this theme exist and bear different names

 Current-mode control also exists and offers interesting characteristics

 Time-shifted-controlled LLC brings a different scheme and simplifies compensation


