

PSRR – Why Measure It, the Measurement Errors and How to Correct Them

Steven M. Sandler - Picotest

12th Power Analysis & Design Symposium 2023 (VIRTUAL) March 15, 2023

Submitted Abstract

Modern distributed systems are noise sensitive. Power rail noise is one of the most significant sources of jitter in high-speed systems, phase noise in RF systems, and noise in A/D and D/A converters. Recommendations abound, from adding ferrite beads and ceramic caps, to LDOs to clean the power supply rails. The most basic of measurements is the frequency domain PSRR measurement. Many manufacturers include data for their components, but in the system, they act very differently than they do in isolation. Measuring PSRR challenges the best of test engineers' ability, making us question even the manufacturers' data. This presentation discusses the major PSRR measurement errors and how to correct them. That's the key to getting accurate PSRR results.

Why Measure PSRR?

Even Tiny Noise Gets Into Sensitive Circuits

One common method of assessing the phase noise jitter relationship is through the Power Supply Modulation Ratio (PSMR) test, where this sensitivity is measured at many frequencies and a noise mask is developed to verify the system level performance

Measuring the Direct Impact on Phase Noise

Date: 29.JUN.2017 03:47:07

Reducing It to a Simpler Form

Symbol	Description	Min	Тур	Мах	Units	
V _{CCBATT} ⁽¹¹⁾	Battery voltage	1.0	-	1.89	V	
GTX and GTH Transceivers						
V _{MGTAVCC} ⁽¹²⁾	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range \leq 10.3125 GHz ⁽¹³⁾⁽¹⁴⁾	0.97	1.0	1.08	V	110mVpp
	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range > 10.3125 GHz	1.02	1.05	1.08	V	30mVpp
V _{MGTAVTT} ⁽¹²⁾	Analog supply voltage for the GTX/GTH transmitter and receiver termination circuits	1.17	1.2	1.23	V	30mVpp
V _{MGTVCCAUX} ⁽¹²⁾	Auxiliary analog Quad PLL (QPLL) voltage supply for the transceivers	1.75	1.80	1.85	V	50mVpp
V _{MGTAVTTRCAL} ⁽¹²⁾	Analog supply voltage for the resistor calibration circuit of the GTX/GTH transceiver column	1.17	1.2	1.23	V	30mVpp

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

As the amplitude of the noise should be limited to less than 10 mVpp, the power supply filter should be designed to attenuate the noise from the switching regulator to meet this requirement

https://support.xilinx.com/s/question/0D54U00005VU9noSAD/power-supply-for-mgt-groups-of-virtex-7-fpga-xc7vx690tffg19272?language=en_US

System "Components" Also Effect PSRR

Ferrite Bead "Attenuation"- Not Everywhere!

6 PICOTEST

And Even Slope Compensation Impacts PSRR

In my presentation "Measurementbased Modelling and Simulation of DC-DC Converters" at Electronica 2018, I showed the impact of current mode control slope compensation on PSRR

Clearly, PSRR is an important consideration as it impacts the load, and it's impacted by many parameters by the voltage regulator, the PCB components, and the sensitivity of the load

This is why it is so important for us to measure it, preferably in-system, at the system level

It's Abundantly Clear Why We Must Measure PSRR

- Many loads are extremely sensitive to power supply noise. Increased power rail noise can cause Bit Error Rate failures due to phase noise/jitter
- Filters comprised of ferrite beads and ceramic capacitors are often recommended, but these
 WILL significantly INCREASE noise if not properly damped
- VRM control loop stability can be degraded by the PCB effects and decoupling capacitors. This can degrade PSRR, resulting in higher noise
- Slope compensation of switching regulator also impacts PSRR and so can be optimized for the best PSRR

https://www.signalintegrityjournal.com/articles/573-designing-power-for-sensitive-circuits

The PSRR Measurement Setup

Noise Injection Methods

Line Injector (open loop summer)

Wide Bandwidth No loop – no stability issue Low power to high power Variable voltage drop (remote sense filter)

The power supply modulation setup is the same for PSRR, PSMR, and PSNR

Copyright © 2023 Picotest.com. All Rights Reserved.

Measuring a 100dB Attenuator

Before measuring something that you don't know, measure something you DO know

With uV sensitivities required by sensitive circuits, many new high performance Linear Regulators and LDOs can provide 100dB PSRR

At low frequency, the error is 694% but it corrects itself at higher frequency

WHY???

This Isn't as Easy as It Looks!

https://www.signalintegrityjournal.com/blogs/ 15-extreme-measurements/post/2484-theultimate-power-rail-noise-measurement

- The output signals can be really tiny (like micro-Volts)
- Measured in one instrument? Ground loop error
- Differential probe? Too noisy
- Injecting high frequency?
- Interconnects in the way

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

What Causes the Error??

The AC modulation current flows through the resistance of both cable shields, providing a shield voltage (similar to ground bounce)

https://www.picotest.com/measurements/2-port.html

There Ya Go

Copyright © 2023 Picotest.com. All Rights Reserved

15 **PICOTEST**

Including the Cables

- Cable shield resistance creates the low frequency error
- Different cables have different shield resistance
- At higher frequencies, the cable coupling starts to correct it

PICOTEST

16

PDN CABLE

Copyright © 2023 Picotest.com. All Rights Reserved.

So How Do We Fix It??

- Cables matter. Use low shield resistance cables
- Improve the coupling on the output side by adding a high CMRR coaxial isolator
- Calibrate the SHORT whenever possible
- While it seems like a differential probe will help, it won't. They are very noisy

The Ideal Setup

≈100-200mΩ resistance provides cable damping

Line Injector

Open loop modulator minimizes inductance Minimize inductance by using short, low inductance cable

P1 PDN CABLE 12 in

Minimize shield resistance to minimize ground loop error

Remote Sense Filter

A remote sense filter keeps the DC voltage fixed while allowing the modulation signal to pass through

https://www.picotest.com/images/download/AppNoteRemoteSenseVer05Final.pdf

Adding a common mode transformer or differential amplifier reduces the ground loop

PICOTES

DUT

P4

Low noise, low impedance probe (P2104A) is ideal, but low resistance passive probe PML 1110 helps

https://www.signalintegrityjournal.com/blogs/15-extrememeasurements/post/2484-the-ultimate-power-rail-noisemeasurement

Not Done Yet – the Capacitors!!

- The interconnecting cable inductance and the modulator resistance form a low pass filter with the DUT capacitors
- Many high-speed specifications recognize this and require their removal for testing purposes
- Yes, THRU calibration at the capacitors can correct this, but the received signals at the output will likely be too small to measure

Figure 11: Module Noise Output Measuremnt

Extreme Measurement

- Even after removing the capacitors, some loads present a very low resistance
- This can be due to a low input voltage, high • power switching regulator (which is negative resistance at low frequency)
- Many high-speed circuits such as transceivers also present a very low resistance, typically on the order of 0.5 Ohms
- In this case, the impedance of the interconnect ۲ quickly degrades the bandwidth
- We can correct this by eliminating the • interconnect!

Parametric Test of **Optical Modules;**

Measuring PSNR/PSRR/PSMR to Meet OSFP/OSFP/SFP **High-Speed Requirements**

Moving the modulator into a probe head removes the interconnect! Problem solved!!

Well, almost. There is still power loss to contend with, so you can see this probe is water-cooled!!

The End Result

Moving the modulator into a probe head eliminated the interconnect, allowing modulation up to 39MHz (-3dB) or even higher into the low resistance load!!

Thank You for Attending!

Learn more about the products and accessories we discussed today by visiting:

- www.picotest.com
- www.omicron-lab.com
- Picotest PSRR Solution page: <u>https://www.picotest.com/measurements/PSRR.html</u>

Stay Connected! Follow Picotest on LinkedIn: <u>https://www.linkedin.com/company/picotest</u>

Check out Picotest's online Forum for questions and answers from Steve and the community: <u>https://www.picotestonline.com/forum</u>

Email **info@picotest.com** with any other questions

