

Measuring Impedance with the Bode 100 OMICRON Lab Webinar Nov. 2014

Let's start with a question

• Why do the presenters wear moustaches?

Agenda

- Direct Impedance measurement methods
- Indirect Impedance via Gain
- Measurement examples
- Time for discussion
- Wishes & feature requests

Impedance Measurement Methods

- Direct Measurements
 - One-Port
 - Impedance Adapter
 - External bridge (e.g. High Impedance)
- Indirect Measurements (via Gain)
 - Two-Port shunt-thru
 - Two-Port series-thru
 - Voltage-Current Gain

Direct Measurement Methods

- Support full impedance calibration (open/short/load)
- Directly displaying impedance, reflection and admittance
 - Ls, Lp, Rs, Rp, Cs, Cp, Q, VSWR

Trace 1 (TR1)	Trace 2 (TR2)	Format
Color	Color 🗾 🗸 🕨	Ymax
Measurement Impedance 💌	Measurement Impedance	Ymin
Display Data 💌	Display Data 💌	Y-Scale
Format Mag 💌	Format Phase (°) 💌	
Ymax 100,00 Ω	Ymax 200,00 °	Data -> I
Ymin 1,00 mΩ	Ymin 200,00 °	Advanced
Y-Scale ○ Lin	Y-Scale Lin Log TR2 Log [TR2] 	2 (TR2)
Data -> Memory 1	Data -> Memory 1	
Main Advanced Memory	Main Advanced Memory	

Mag

•

Direct Measurement Methods

One-Port

External Bridge

Impedance Adapter

One-Port Method (Overview)

- Standard VNA impedance measurement via S11
- As with any VNA most accurate around 50 Ω
- Recommended from 0.5 Ω 10 k Ω
- Full frequency range 1 Hz 40 MHz
- Uncalibrated measurement is possible
- Full impedance calibration possible to remove influence of cable or measurement setup

One-Port Method (Setup)

Measurement setup

Bode Analyzer Suite

- 1. Frequency Sweep Mode
- 2. Trace Settings
 - Measurement: Impedance
 - Format: e.g. Mag & Phase or Real & Imag...
- 3. Frequency Settings
 - Start Frequency
 - Stop Frequency
 - Sweep Mode, Number of Points

Ų 😵

₽. -

One-Port Method (Device Configuration)

If **Measurement** is set to Impedance, the **Impedance/Reflection** configuration is used for the measurement

One-Port Example

Measure inductance and self resonance of a power inductor (uncalibrated)

DUT: 22 µH shielded power inductor (WE 744 77 912 2)

Datasheet:

D Electrical Properties:

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	22	μH	±20%
Rated current	$\Delta T = 40 \text{ K}$	I _R	1.41	А	max.
Saturation current	I∆L/LI < 10%	I _{sat}	1.7	А	typ.
DC Resistance	@ 20°C	R _{DC}	0.09	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.11	Ω	max.
Self resonant frequency		fres	15	MHz	typ.

One-Port Example

Impedance Adapter Method (Overview)

- Special software mode for our B-WIC and B-SMC impedance test fixtures
- Frequency range 1Hz 40 MHz
- Max. impedance range 0.02 Ω 600 k Ω
- Full impedance calibration required

Impedance Adapter Method (Setup)

Measurement setup

Bode Analyzer Suite

- 1. Frequency Sweep (Impedance Adapter) Mode
- 2. Trace Settings
 - Format: e.g. Mag (Log) & Phase or Rs & Cs
- 3. Frequency Settings
 - Start Frequency
 - Stop Frequency
 - Sweep Mode, Number of Points
- 4. Device Configuration
 - pre-set for excellent results

Impedance Adapter Calibration

• B-WIC

OPEN

SHORT

LOAD

• B-SMC

User Calibration / Probe Calibration

• User Calibration (User Range Calibration)

Calibrates at exactly the frequencies that are currently measured

+ No interpolation, suitable for narrowband probes

Probe Calibration (Full Range Calibration)
 calibrates at pre-defined frequencies and interpolates in-between
 + Calibration does not get lost when frequency range is changed

Impedance Adapter Example

Measure capacitance and ESR of a aluminum capacitor DUT: 220 µF aluminum capacitor (ECA1HM221)

Standard Products												
		Case	e size	Specification		Lead Length				Min. Packaging Q'ty		
M/1/	Cap.	Cap. Ripple tan δ		tan δ	Lead	Lead Space				0		
vv.v.	(±20 %)	Dia.	Length	(120 Hz) (+85 °C)	(120 Hz) (+20 °C)) Dia. Straight Tapii *E	Taping * B	Taping * i	Part No.	Straight Leads	Taping	
(V)	(µF)	(mm)	(mm)	(mA r.m.s.)		(mm)	(mm)	(mm)	(mm)		(pcs)	(pcs)
	220	10	12.5	400	0.12	0.6	5.0	5.0		ECA1HM221()	200	500

$$ESR = \frac{\tan(\delta)}{\omega C} = \frac{0.12}{2\pi \cdot 120 Hz \cdot 220 \mu F} = 0.72 \ \Omega \ @ \ 120 \ Hz$$

Impedance Adapter Example

External Bridge Method

- Use with custom measurement bridges (e.g. optimized for very high impedance values)
- Use for measurements that require high power (external amplifier + directional coupler)
- Frequency range 1Hz 40 MHz or depending on bridge
- Full impedance calibration required

External Bridge Example

- Measure very high impedance with custom bridge
- Detailed explanation is available for download <u>http://www.omicron-lab.com/bode-100/application-notes-know-how/articles-use-cases.html#3</u>

External Bridge Example

DUT: 470 pF capacitor

Indirect Measurements (via Gain)

- Bode 100 measures Gain
 - Gain result must be transformed to impedance
 - or already equals impedance
- Thru calibration to remove influence of probes & cables

• Trace settings:

I Trace 1 (TR1)	▼ Trace 2 (TR2)				
Color 🗾 🗸 🕨	Color 🔽 🕨				
Measurement Gain 💌	Measurement Gain 💌				
Display Data 👻	Display Data 👻				
Format Mag 🗨	Format Phase (°) 💌				
Ymax 5.00	Ymax 200,00 °				
Ymin 1.00 m	Ymin -200,00 °				
Y-Scale ○ Lin ⓒ Log TR1 ○ Log [TR1]	Y-Scale 📀 Lin C Log TR2 C Log [TR2]				
Data -> Memory 1	Data -> Memory 1				
Main Advanced Memory	Main Advanced Memory				

Indirect Measurement Setups

Shunt-Thru

Series-Thru

Voltage-Current Gain

Shunt-Thru Method

- Derives impedance from standard S21 VNA measurement
- Very accurate below 10 $\boldsymbol{\Omega}$
- Best choice for ultra-low impedance measurements (mΩ)
- Full frequency range 1Hz 40 MHz
- Uncalibrated measurement is possible
- Thru calibration possible to remove influence of cables or probes

Shunt-Thru Method

• Measurement Setup

- Convert S21 to Impedance: $Z_{DUT} = 25\Omega \frac{S_{21}}{1-S_{21}}$
- For frequencies <10kHz use a common mode transformer to reduce the cable braid error!
- Configure Bode 100 to measure S21 (terminate CH2 with 50 Ω and select Gain)

Shunt-Thru Example

5 m Ω shunt resistor (Dale WSR-2)

Inductance at 10 MHz: $L = \frac{X}{\omega} = \frac{0.17\Omega}{10.6MHz \cdot 2\pi} = 2.55 \text{ nH}$

Series-Thru

- Derives impedance from standard S21 VNA measurement
- Very accurate for high impedance values > 100 Ω
- Full frequency range 1 Hz 40 MHz
- Uncalibrated measurement is possible
- Thru calibration possible to remove influence of cables

Series-Thru

• Measurement setup

• Convert S21 to Impedance: $Z_{DUT} = 100 \Omega \cdot \frac{1-S_{21}}{S_{21}}$

Voltage-Current Gain

- Suitable for in-circuit measurements (input impedance/output impedance)
- Modulate signal with output of Bode 100
- Connect CH1 to current and CH2 to voltage signal \rightarrow

$$Gain = \frac{V_{CH2}}{V_{CH1}} = \frac{V}{I} = Z$$

Voltage-Current Gain calibration

• Thru-calibration is possible by using a 1 Ω resistor. This compensates the frequency response of the probes

Application Example – DC Sensitivity

- Measure DC voltage sensitivity of ceramic capacitors
- One-port method and DC-bias injector (J2130A)
- See also application note: <u>http://www.omicron-lab.com/bode-100/application-notes-know-how/application-notes/dc-biased-impedance-measurement.html</u>

Feel free to ask questions via the chat function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: <u>info@omicron-lab.com</u>

Thank you for your attention!

