

Power Supply Loop Stability Measurement OMICRON Lab Webinar Nov. 2014

Let's start with a question

• Why do the presenters wear moustaches?

Agenda

- Introduction
- What is stability?
- Choosing the right injection point
- Choosing the right value for the injection resistor
- Choosing the right injection level
- Practical stability measurement
- Interpretation of the results

Stability

Negative feedback system

- Negative feedback \rightarrow stable
- Positive feedback \rightarrow oscillating (instability)

How to Determine Stability?

By analyzing the loop gain T and ensure that there is sufficient stability margin.

G(s)...Plant H(s)...Compensator $T(s) = G(s) \cdot H(s)$... Loop Gain

Loop Gain is the product of all gains around the loop

Stability Margins

OMICRON

Why do we refer to 0° instead of -180°?

Open loop gain T_o(s)

Measured loop gain T(s)

Transfer function measurement

Bode 100 measures the transfer function \underline{H}_2 from CH1 to CH2

Note: Use the external reference function of the Bode 100 to enable CH1 input!

Loop Gain Measurement

Voltage Injection Method (measures voltage loop gain)

Selecting the Injection Point

The following conditions needs to be fulfilled to ensure that the measured loop gain equals the "real" loop gain!

OMICRO

Choosing the right size of the injection resistor R_i

- R_i << feedback divider
- smaller R_i = smaller injected voltage
- smaller R_i = lower
 3dB start frequency of the injection transformer

In-system measurements are important

- The input filter can influence the stability (Middlebrook)
- The load influences the stability margin

Always measure the loop gain under **all expected load conditions** and with the **input filter** connected.

Injection Point Examples LT8611 Voltage Control loop

Injection Point Examples LT8611 <u>Current</u> Control loop

Injection Point Examples LT3757 SEPIC Converter

Injection Point Examples LT3755-2 Boost LED Driver

(c) by Linear Technology, used with permission

LT1976 Buck converter

Input voltage: 4 V – 60 V Output voltage: 3.3 V Output current: 1 A Switching frequency: 200 kHz

Infineon TLD5098EL boost to battery configuration

Input voltage: 12 V Output voltage: ≈ 30 V Constant output current to drive LEDs

Figure 23 TLD5095/98 closed loop schematic

What can you do if you can't break the feedback loop?

- loop stability can be derived from the output impedance
- non-invasive stability measurement with the Picotest J2111 current injector
- See also our webinar tomorrow!

Further Power Supply Measurements

- Non-Invasive Stability
- Output impedance
- PSRR (power supply rejection ratio)
- Input impedance (input filter stability)
- Crosstalk
- Reverse rejection

Which topic would be most interesting for you? Send us an e-mail to <u>info@omicron-lab.com</u>

Feel free to ask questions via the chat function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: <u>info@omicron-lab.com</u>

Thank you for your attention!

