

Passive Component Analysis OMICRON Lab Webinar Nov. 2015

Webinar Hints

Activate the chat function

Agenda

- Why do we analyze passive components
- How to measure component impedance
- A detailed look at a capacitor
- Inductor and transformer
- Filter simulation vs. real world
- Summary

Passive Components

- Essential parts in analog circuits
- Inductor and capacitor used e.g. to store energy or to create filter circuits

Inductor:
$$v(t) = L \frac{di(t)}{dt}$$
 $X_L = \omega L$ $\frac{V}{I} = Z_L = j\omega L$
Capacitor: $i(t) = C \frac{dv(t)}{dt}$ $X_C = \frac{-1}{\omega C}$ $\frac{V}{I} = Z_C = \frac{1}{j\omega C}$

Theory and Reality

- Theoretically inductor and capacitor are purely reactive elements → No resistive behavior and therefore lossless
- In reality **parasitics** can strongly influence the real behavior especially at higher frequencies

Examples:

Inductor:

- Wire has resistance
- Windings form electric field
- Core is not lossless

Capacitor:

- Plates are resistive
- Rolling of foils creates inductance
- Insulator not lossless

Equivalent Circuits

- Are used to model the real behavior of the components
- Different complexity of models
 - 1st order models are valid for one frequency
 - Single Frequency Mode in BAS calculates R, L and C

Frequency Sweep Mode calculates R, L and C over frequency

Equivalent Circuits

- Higher complexity models are valid for a frequency range
 - 2nd Order equivalent circuits for inductor and capacitor

- 3rd Order models (e.g. quartz crystal or piezo element)

see Application Note: Equivalent Circuit Analysis of Quartz Crystals https://www.omicron-lab.com/application-notes/

 Parameter identification requires manual work or e.g. curve-fitting procedure

Сь≐

Bode 100 Impedance Measurement Methods

- Direct Measurements
 - One-Port Reflection
 - Impedance Adapter (3-port technique)
 - External bridge (e.g. high impedance bridge)
- Indirect Measurements (via Gain)
 - Shunt-Thru (2-port technique)
 - Series-Thru (2-port technique)
 - Voltage-Current Gain (3-port technique)

Direct Measurement Methods

Indirect Measurement Methods

Impedance Range Overview

Why is it important to measure capacitors?

- A capacitor is **NEVER** just a capacitor
- Capacitor ESR influences the phase margin of power supplies
- Capacitor ESR influences the output ripple at the switching frequency of a SMPS
- ESR can change over Frequency
- Capacitors are inductors above their resonance frequency

What does the data sheet tell us?

220 μ F aluminum capacitor

Standard Products												
W.V.	Cap. (±20 %)	Case size		Specification		Lead Length					Min. Packaging Q'ty	
		Dia.	Length	Ripple	tan δ	Lead Dia.	Lead Space		ce		0	
				(120 Hz) (+85 °C)	(120 Hz) (+20 °C)		Straight	Taping * B	Taping * i	Part No.	Straight Leads	Taping
(V)	(µF)	(mm)	(mm)	(mA r.m.s.)		(mm)	(mm)	(mm)	(mm)		(pcs)	(pcs)
	220	10	12.5	400	0.12	0.6	5.0	5.0		ECA1HM221()	200	500

 $C = 220 \mu F (\pm 20\%)$

 $ESR = \frac{\tan(\delta)}{\omega C} = \frac{0.12}{2\pi \cdot 120 Hz \cdot 220 \mu F} = 0.72 \ \Omega \ @ \ 120 \ Hz$

This is what the measurement tells us

Calibration

Open

Load

User Calibration / Probe Calibration

• User Calibration (User Range Calibration)

Calibrates at exactly the frequencies that are currently measured

+ No interpolation, suitable for narrowband probes

Probe Calibration (Full Range Calibration)
calibrates at pre-defined frequencies and interpolates in-between
+ Calibration does not get lost when frequency range is changed

Detailed Example available

see Application Note:

Capacitor ESR Measurement with Bode 100 and B-WIC

https://www.omicron-lab.com/application-notes/

Fitting Model to Measured Impedance

- Various methods available
- We use curve-fitting
- A Preview tool is available on request

Simulation vs. Measurement

Voltage sensitivity of capacitors

see Application Note: DC Biased Impedance Measurements

https://www.omicron-lab.com/application-notes/

OMICRON

Why should we measure inductors?

- An inductor is **NEVER** just an inductor
- AC resistance <> DC resistance
 - skin effects
 - "Eddie Currents"
- Inductors have resonance frequencies
- Inductors with magnetic cores can have core losses

What does the data sheet tell us?

33 µH shielded power inductor

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	33	μH	±20%
Rated current	∆T = 40 K	I _R	2.68	А	max.
Saturation current	I∆L/LI < 10%	I _{sat}	3.00	А	typ.
DC Resistance	@ 20°C	R _{DC}	0.049	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.057	Ω	max.
Self resonant frequency		f _{res}	11	MHz	typ.

H = 33μ H (± 20%) @ 1 kHz R_{DC} =0,049 Ω (typ.) R_{DC} =0,057 Ω (max.) f_{res} = 11 MHz

This is what the measurement tells us

Flyback Transformer Leakage Inductance

- Not all flux generated by the primary winding is coupled to the secondary winding
 - some flux leaks
 - some contributes to core losses
- Represented by a series inductance in the circuit
- Leakage inductance creates a voltage spike when turning off current through primary side (flyback converter)

Measuring Leakage Inductance

Leakage inductance is measured by shorting all other windings except the primary winding

 \rightarrow Leakage inductance is not constant over frequency

LC Filter Bode Diagram

.ac dec 20 10 40meg

.step param LOAD list .5 1 5 500

Simulation in LTSpice:

OMICRON

LC Filter Test board

Measuring the voltage transfer function $H(j\omega) = \frac{V_{out}}{V_{in}}$

Measurement vs. Simulation

Measurement Simulation

- Stopband is different
- Phase does not reach -180°
- Second resonance at 30 MHz
- \rightarrow parasitic effects

LC Filter Including Parasitics

- much better fit between simulation and measurement
- Could be further improved by better component models

Reducing Output Ripple

 \rightarrow 2 x 10µF ceramics adds 20dB attenuation at 300 kHz

Imroved stop band performance at 300 kHz (e.g. switching frequency)

Summary

- Component parasitics are important to understand real life circuit behavior
- Models considering parasitics allow better simulation
- Measuring components can tell us more than the data sheet says

Feel free to ask questions via the chat function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: info@omicron-lab.com

Thank you for your attention!

