

Power Supply Dynamics & Stability

OMICRON Lab Webinar Series 2020

2020-04-28

Webinar Hints

Open the Q&A function

We will record the presentation such that you can view it again later

OMICRON Lab Webinar Series 2020

Send questions to the presenters

2020

OMICRO

Florian Hämmerle

- Studied Mechatronics at Vorarlberg University of Applied Sciences
- Working at OMICRON Lab since 2010 in:
 - Technical Support & Applications
 - Product management

- Contact:
 - <u>florian.haemmerle@omicron-lab.com</u>
 - https://meet-omicron.webex.com/meet/florian.haemmerle

Tobias Schuster

- Completed electrical engineering college in 2013
- Studied Industrial Engineering and Management
- Working at OMICRON Lab since 2015 focusing on:
 - Technical Support
 - Applications
 - Sales
- Contact:
 - tobias.schuster@omicron-lab.com
 - https://meet-omicron.webex.com/meet/tobias.schuster

Agenda

- Open-loop transfer functions
- Closed-loop transfer functions & loop gain
- Measuring loop gain
 - Voltage injection method
 - Injection signal level size
 - Choosing the correct injection point
- Measuring plant and compensator
- Hands-On Live-Measurements
 - Measure Loop
 - Measure Plant & Compensator
 - Step-Load Response

DC/DC Converter System

- How will the system react to:
 - Sudden line-voltage change?
 - A change in the reference voltage or set-point?

- How to design the compensator (place the poles and zeros)?
- Dynamic modelling used (can be quite challenging)
 It makes sense to verify the design (in time-domain and in frequency domain)

Open Loop Plant Transfer Functions

Note: for simplicity lets assume that the transfer function is equal to the frequency response ($s = j\omega$)

Closing the Loop

Example: Buck Converter Transfer Functions:

The Closed-Loop System

Closed Loop Reference to Output

$$G_{ref-out,CL}(s) = \frac{\hat{v}_{out}(s)}{\hat{v}_{ref}(s)} = \frac{G_c(s)G_{PWM}(s)G_{vd}(s)}{1+G_c(s)G_{PWM}(s)G_{vd}(s)}$$

$$G_{ref-out,CL}(s) = \frac{T(s)}{1+T(s)}$$
Loop Gain
$$T(s) = G_c(s)G_{PWM}(s)G_{vd}(s)$$
(the product of all gains around the loop)

If
$$T(s) \gg 1$$
, then $G_{ref-out,CL}(s) \approx 1$.
This means the output follows the reference
 \rightarrow Goal of the control loop

Closed Loop Input to Output

Open-loop input to output transfer function $G_{in-out}(s)$

Closing the feedback loop $\hat{v}_{out} = \hat{v}_{in}(s) \cdot G_{in-out}(s) - \hat{v}_{out}(s) \cdot T(s)$

and therefore

$$G_{in-out,CL}(s) = \frac{\hat{v}_{out}(s)}{\hat{v}_{in}(s)} = \frac{G_{in-out}(s)}{1+T(s)}$$

If $T(s) \gg$ then $G_{in-out,CL}(s) \ll$ \rightarrow This means that line-distortions are rejected (PSRR)

Loop Gain T(s)

- For good output regulation we need high loop gain
- For T(s) < 1 the feedback has no effect
- High loop gain for all frequencies is not possible and not desired

- Low frequency Gain should be relatively high to achieve good regulation. There is always some gain limitation
- Loop Gain should cross 0dB with slope of -1 (20dB/decade)
- High frequency Gain should be low to damp high frequency noise and increase robustness of system

Stability of the Closed Loop System

Transfer functions of the closed loop:

$$G_{ref-out,CL}(s) = \frac{T(s)}{1+T(s)} \qquad \qquad G_{in-out,CL}(s) = \frac{G_{in-out}(s)}{1+T(s)}$$

What happens if T(s) = -1? \rightarrow Closed Loop Transfer function will tend to get "infinite" \rightarrow Behavior of the loop is no longer defined (unstable)

By checking the loop gain T(s) we can check if the closed loop system will be stable or not.

Test: How much distance does T(s) have towards -1

The Phase Margin Test

(A special case of the general Nyquist stability criterion) If phase margin $>0^{\circ} \rightarrow$ the closed loop system is "stable"

How much Phase Margin is desired?

Example: Voltage-mode Buck Converter Reference to Output Step

Gain Margin

Second order system \rightarrow no Gain Margin (phase never reaches -180°). Parasitics the systems \rightarrow > second order. \rightarrow Gain Margin

Gain Margin is the amount of gain necessary to make the loop hit the instability point.

Why Measuring Stability?

- Ensure stable operation at all operating points and different environmental conditions
- Low phase margin can add significant ringing and degrade system performance
- Especially linear regulators should show enough stability margin when powering clocks, opamps or ADCs
- Verify design & simulation

Measuring Transfer Functions (Gain/Phase)

Bode 100 measures the transfer function \underline{H}_2 from CH1 to CH2

- The signal path from Output to H₂ is not part of the measurement result!
- A transfer function can only be measured / defined for an LTI system
- In case of a switching converter only once per switching cycle a new duty cycle value is created. Therefore the control loop can only react to frequencies up to $f_s/_2$.
 - \rightarrow Loop Gain needs to be measured only to half switching frequency

Is Calibration Necessary?

- Normally not. Basic accuracy of the setup should be sufficient.
- Not sure? \rightarrow Check it out!

Should result in a flat line at 0 dB and 0°

Measuring Loop Gain (Voltage Injection)

Loop gain is measured by "breaking" the loop at the injection point and inserting a "small" injection resistor (e.g. 10 Ω).

The voltage loop gain is measured by $T_{v}(s) = \frac{v_{y}(s)}{v_{y}(s)}$

The Injection Point (Voltage Injection)

We assumed that signal information flow is unique and only in form of voltages. $\frac{v_{re}}{-}$ However at every connection point there is voltage and current.

Bode 100 measures $T_{v}(s)$

$$T_{v}(s) = \frac{V_{y}(s)}{V_{x}(s)} = T(s) \underbrace{\left(1 + \frac{Z_{out}(s)}{Z_{in}(s)}\right)}_{1^{st} term} + \underbrace{\frac{Z_{out}(s)}{Z_{in}(s)}}_{2^{nd} term}$$

$$\approx 1 \text{ for } |Z_{in}(s)| \gg |Z_{out}(s)|$$
ignore for $|T(s)| \gg \left|\frac{Z_{out}(s)}{Z_{in}(s)}\right|$
OMICRON

LAB

Selecting the Voltage Injection Point

To keep the measurement error small we need to find a suitable injection point that fulfills the two conditions: $v_{ref}(s) = v_{e}(s)$

3. Ensure that **no parallel** signal **path bypassing** the injection point!

Generally well suited points:

- Output of a voltage source
- Input of an operational amplifier
- Output of an operational amplifier
- Best between two op-amps

Measure the Loop in a Buck

OMICRON

Some Injection Point Examples

VRTS 1.5 Linear regulator with 3.3V output voltage.

OMICRON

Step Down Converter: Demo 1750A

Flyback Converter: Demo 1412A

Page 26

Smart Measurement Solutions®

Voltage Loop Gain Example

TLD5098 LED Driver board.

Controls the current via measuring voltage at high-side shunt resistor. \rightarrow Voltage loop.

Injection point satisfying $|Z_{in}(s)| \gg |Z_{out}(s)|$ is given after the current shunt that has low impedance. Impedance towards loop is input of differential amplifier (>>)

High Voltage LED Driver: Demo 1268b-A

Reading Phase Margin from Measurement

Phase Margin is read directly from the measurement! φ_m is the distance to 0° and NOT to -180°

Reason: We measure in the closed loop system \rightarrow our signal will run through the inverting error amp and get an additional 180° phase shift. \rightarrow The instability point is at +1!

Theoretical open loop gain $T_o(s)$

Measured loop gain $T_v(s)$

Injection Signal Size

Small signal models (linear) are used to design the compensator

- \rightarrow Measurement signal should be "small signal"
- Measurement result must be independent of signal size!
- 1. Choose an injection signal level and measure
- 2. Reduce the injection signal by e.g. 10dB

 \rightarrow If the result changes \rightarrow do further reduce until it stays constant!

Shaped Level

- Correct results and clean curves? → use the "shaped level"!
- Low level at sensitive frequencies and high level where you need more disturbance power.

Please consider Vcc

- The input filter can influence the stability (Middlebrook)
- The load can influence the measurement or plant transfer function
- The operating point can influence the plant transfer function
- →Always measure loop gain under all expected load conditions and with the input filter connected

Note: Electronic loads can cause strange effects if their control loop interacts with the system.

Measure the Plant in Analog Control

Measure the Compensator in Analog Control

Measure the Plant in Digital System

- The COMP-pin is not existing (in Processor)
- Output is duty-cycle signal

•

 \rightarrow Use loop-setup and set compensator to Gain = 1

OMICRON

Measuring Line-Output (PSRR)

- Modulate the line using e.g. a Picotest injector
 - J2120A (5A 40V)
 - J2121A (20A 400V)
- Connect CH1 to input
- Connect CH2 to output
- → Result: line-to-output transfer function or PSRR

Hands-On a SEPIC!

Linear (Analog) Demo Circuit 1342B

Demo Circuit 13428

LT3758A

High Efficiency SEPIC Converter

- Input: 18 V 72 V, Output: 24V, 1A
- Switching frequency 300 kHz
 - E1 0 18V 79 C1 2.2uF 232K L1-1 47uH R4 \sim Stability information 20 VCC O U1 LT3758AEMSE 4.7uF PDS31 Crossover frequency JP1 ON RUN SHDN/UVLO ≈ 8 kHz C10 ±4.70F L1-2 (Q1 47uH FDMS2572 30.9K C12 24V@10 GATE + C4 22uF 35V 100pF +C3 222UF 35V R7 Phase Margin 3.3uF 42.2K C11 SENSE . C13 4.7nF -O GND 0.1uF > 65° in all operating points E4 0.02 280K \rightarrow Very stable control 1% R8 10K R2 20.0K loop design GND O 1% Too boring - let's modify the control loop \rightarrow

Making Things "more Interesting"

- 1. Simulate circuit in Biricha WDS
- 2. Verify simulation with Bode 100
- 3. Modify Type II Transconductance compensator for less phase margin
- 4. Solder new component values on the board

	Original	Modified					
R6	30.6 kΩ	100 kΩ					
C11	4.7 nF	1 nF					
C12	100 pF	100 pF					

nacification	Coupled Inductor/Can	Samiconductore	Erequency	Response Ora	it Power Lore B	idaat Summa	ru Snica Si	mulation				
Itput Capacitor	Controller Design	Analog (Non-Isolated)	Bode F	Plot	Stabilitu							
or Amplifier			□ Pla	ant - blue			Fx	P.m.	G.m.	Slope at Fx	RHPZ	Ha
Reference Voltage		V.	0 *Em	notv*	☐ -180 ph	Measured	21309Hz	25°	8dB n/a	-28.1dB/dec n/a	66.7kHz	Power
	- U		□ Co	mp - red		modulou			1.1.0	1110		
mpling Divider			⊡Lo	op - green		– Chabilita Cau	aan (min/mau	a				
Desired current th	rough divider	0.1 v mA	□ Me	easured - blk	Fix: 21.31 / 21.31kHz Slope at Fix: -28.1 / -28.1 dB/dec							
R1	224	280 V kΩ	0 "Empty" 🗸 🗸 -180 ph			P.m.: 25 / 25*			F	RHPZ: 66.7 / 66.7kHz		
Rb	20	kΩ	□ Sp	ice - blk	G.m.: 8 / 8dB							
Actual current thr	ough pd 0.08	mA	80									
ntroller Componen	t Values		00 (m) 40									
R2	82.657	100 V kΩ	9 20									
R3	n/a r	1/a V kΩ	<u>i</u>									
C1	0.666	1 v nF	5e -20									
C2	n/a	n/a v nF	-40	Ē		¥			Į,		ě	
C3	0.036	0.1 v nF	Frequency (Hz)									
			-45									
Pole at the origin	s and zeros	Hz	00- 60									
Eiset Dolo	1929.151		50 -135					_		~~~		
First Fold	17507.044	Hz.	9 -180							-	<u> </u>	
Second Pole	n/a	12	4 -225									
First Zero	1591.549	nz	-2/0	6		¥			Į,		ě	
Second Zero	n/a	Hz	<									>
			Fx - Cro limits Your co freque	ossover fre rossover fr ncy. Lowe	equency (kł equency is r your cross	lz) (speci greater t sover free	ified) va than one quency a	lue is e 10th accord	outsion of yo dingly	de of recor ur right ha	nmende Ind plan	d e zero
ed to ali		For Help, press F1	NU	JM		Power Lo	oss Budget:	1.3 W us	ed of 4.2	W allowed		
							\sim					
	R	iricha	$\mathbf{V}\mathbf{V}\mathbf{I}$)S)DSI(nn :	50	TT\/	\mathbf{a}	re		

Measuring the Loop of the 1342B

Measure the Compensator

Measure the Plant of the 1342B

Small-Signal Step-Load Response

- Trigger to repetitive load steps
- Use averaging to remove switching ripple and noise
- → Small signal stability in timedomain

References and Further Reading

[1] R. W. Erickson and D. Maksimovic, *Fundamentals of Power Electronics*, 2nd ed. 2001. Norwell, Mass: Springer, 2001.

[2] R. D. MIDDLEBROOK, "Measurement of loop gain in feedback systems," *International Journal of Electronics*, vol. 38, no. 4, pp. 485–512, Apr. 1975.

[3] Dean Venable, "Practical Testing Techniques For Modern Control Loops", Venable Technical Paper #16

[4] OMICRON Lab, DC/DC Converter Stability Measurement, https://www.omicron-lab.com/applications/detail/news/dcdc-converterstability-measurement/

Feel free to ask questions via the Q&A function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: info@omicron-lab.com

Thank you for your attention!

