

Input Impedance & Input Filter Stability

OMICRON Lab Webinar Series 2020

2020-04-30

Webinar Hints

Open the Q&A function

We will record the presentation such that you can view it again later

OMICRON Lab Webinar Series 2020

Send questions to the presenters

2020

OMICRO

Florian Hämmerle

- Studied Mechatronics at Vorarlberg University of Applied Sciences
- Working at OMICRON Lab since 2010 in:
 - Technical Support & Applications
 - Product management

- Contact:
 - <u>florian.haemmerle@omicron-lab.com</u>
 - https://meet-omicron.webex.com/meet/florian.haemmerle

Tobias Schuster

- Completed electrical engineering college in 2013
- Studied Industrial Engineering and Management
- Working at OMICRON Lab since 2015 focusing on:
 - Technical Support
 - Applications
 - Sales
- Contact:
 - tobias.schuster@omicron-lab.com
 - https://meet-omicron.webex.com/meet/tobias.schuster

Agenda

- The input filter stability problem
- Experiment: Badly designed input filter
- Damping the input filter
- Input Impedance measurement
 - Modulation
 - Voltage measurement
 - Current measurement
- Hands-On measurements

Input Filter Stability Problem

Converter has a **negative input impedance** (increasing voltage \rightarrow reduces current \rightarrow R is negative) \rightarrow negative resistance oscillator is possible

Extra-Element-Theorem (Middlebrook)

Extra element theorem of Middlebrook shows how a transfer function is changed when an additional impedance is added to a linear network (-7, -7)

Design Criterion for Stable System

• If $Z_{out} \ll Z_N$ and $Z_{out} \ll Z_D$ then $\frac{1 + \frac{Z_{out}}{Z_N}}{1 + \frac{Z_{out}}{Z_D}} \approx 1$

→ system performance is not affected by the filter. (Z_N and Z_D need to be calculated or simulated)

• If converter is a "black-box" only the much simpler criterion $Z_{out} \ll Z_{in}$ can be applied on the measured closed loop input impedance Z_{in}

Note: $Z_{out} \ll Z_{in}$ ensures stability but does not guarantee that system performance is unaffected!

Does it happen in reality?

Example:

Synchronous Buck converter evaluation board:

 $V_{in} \le 30 V$ $V_{out} = 3.3 V$

Load:

$$I_{out} = 0.3 A \rightarrow R_L = 11 \Omega$$

Component	Value
C _{IN}	2 x 10 µF
C _{OUT}	2 x 10 µF
L1	15 µH
R _T	31.2 kΩ
R _B	10 kΩ
R _{EN}	1 MΩ
C _{VCC}	1 µF
C _{BOOST}	0.1 µF

Input Current Ripple

Without input filter

With input filter-beautifully flat...BUT!?

() SH

091.

DOVD a

VCC (

Influence on Loop Gain (Vin = 4V)

- Note: This is a real measurement result.
- Distortion is not caused by excessive injection level
- Filter adds second crossover frequency
- Reduces phase margin at first crossover
- Will influence the load step response

Small-Signal Load Step Response

No or damped input filter

Un-Damped input filter

50 mA load steps created with Picotest J2111A current injector and G5100A AWG. Scope: 1:1 probe and averaging on to remove switching ripple.

Checking the Impedance Condition

LC Input-Filter Output Impedance

Damping the Input Filter

- After damping the influence on loop gain is small
- Stability and performance are not affected anymore

Practical Input Filter Damping

- R-C Parallel Damping
 - additional DC blocking capacitor
 - ESR of blocking capacitor might be sufficient
- R-L Parallel Damping
 - Damping inductor << filter inductor since DC resistance is higher
 - ESR of inductor might be sufficient

See literature [1], [2], [3] etc. for optimal damping (minimize component size).

Measuring Input Impedance

Use Voltage/Current measurement mode of BAS

Advantage of Voltage/Current mode in BAS 3.X:

- Impedance result formats (Ls, Cs etc...)
- Thru or Open/Short/Load calibration can be applied
- Arbitrary probe factor can be set in hardware setup

Input Impedance Measurement

Voltage/Current mode calculates: $Z = Gain = \frac{V_{CH2}}{V_{CH1}} = \frac{v_{in}}{i_{in}}$

Requirements:

- AC modulation of input
- Input current measurement
- Input voltage measurement

Bode 100 Hardware Setup

- Attenuators to improve signal / noise
- Channel termination
 1 MΩ or 50 Ω
- Arbitrary probe factor (use negative value to invert channel)

Hint: The Bode 100 hardware is configured at the time when a measurement or calibration is started!

Modulating the DUT Input

Input voltage must be modulated proportionally to Bode 100 output signal (challenging depending on voltage level and power level).

- Use specific devices
 - Picotest J2120A Line Injector (50 V / 5 A)
 - Picotest J2121A Line Injector (400 V / 20 A)
- Inductive coupling / signal injection
- Capacitive coupling / signal injection

An external power amplifier might be needed for modulation if the 13 dBm (20 mW @ 50 Ω) are not sufficient.

Modulating the DUT Input (2)

Picotest J2120A/J2121A

Signal injection (capacitive coupling)

Advantage:

• Easy to use

Disadvantages:

- Maximum ratings fixed
- Introduces DC voltage loss

Advantage:

Scaleable

Disadvantage:

- Maybe an amplifier needed
- DC block limits lower frequency

Modulating the DUT Input (3)

Signal Injection (inductive coupling)

Configurable power amplifier

Advantage:

Scaleable

Disadvantages:

- Maybe an amplifier needed
- Hard to get right injection probe

Advantages:

- Powerful
- Fully configurable

Disadvantage:

• Price

Injection Method Hint

Provide a low-impedance current path for the injected AC measurement signal

- Increases injected signal size
- Improves measurement results
- Enables calibration (Open, Short, Load) without DC power applied

Measuring the Input Voltage

	1:1 Connection (BNC cable)	10:1 Passive Probe	Active Differential Probe (safety isolation probe)
Price	low	medium	high
Isolation	no	no	yes
Noise	low	medium	high

Measuring the Input Current

compensated

Hall-Effect Probe Active Rogowsky **Current Transformer Shunt Resistor** (BNC connector) (Current Monitor) **Current Probe** :0 0 medium medium Price high low Isolation yes yes yes no DC LF Limit Hz...kHz Hz...kHz DC HF limit 20 - 50 MHz 20 - 30 MHz MHz MHz

no

power limit

DC sensitive

yes

Measurement Setup Verification

Use a known impedance (e.g. a 100 Ω resistor) as DUT

Calibration

BAS 3.X supports either Thru calibration **or** Open/Short/Load calibration in Voltage/Current mode

User Range Calibration X					
	Impedance calibration:				
	This measurement mode supports two impedance calibration methods. The Thru calibration and the Open/Short/Load calibration:				
	Thru calibration Pen/Short/Load calibration				
	Thru calibration:	Open/Short/Load calibration:			
	Compensate the influence of the connection cables by connecting a Thru connection instead of the DUT to the test setup. Then press Start to perform the Thru calibration.	Connect the corresponding calibration objects instead of the DUT to the test setup. Then press Start to perform the calibration. Note: All three calibrations (Open, Short and Load) must be performed.			
	Thru Start Not Performed	Open	Start	Not Performed	
		Short	Start	Not Performed	
		Load	Start	Not Performed	
		Advanced Settings			
				Close	

Thru Calibration

Calibrates the underlying Gain measurement (Z = Gain) Use a 1 Ω resistor instead of DUT to perform Thru calibration (1 $\Omega \triangleq$ Gain of 1)

Advantages:

- Simple
- Only one measurement (calibration) needed

Disadvantage:

Resistor is never ideal

 (1 Ω resistor shows significant reactance at high frequency)
 Example: 10nH @ 1 MHz
 → 63 mΩ ... 6% error

OMICRON

Open/Short/Load Calibration

Full impedance calibration

Advantages:

- Highest accuracy and widest frequency range
- Compensates more effects than Thru

Disadvantage

- Not every test-setup is suitable for Short and Open (especially when DC cannot be removed!)
- 3 calibration measurements needed

Measure Input Impedance (with Input C)

Input Impedance depends on Input Voltage

Input capacitor DC voltage sensitivity

Two parallel $10\mu F$ ceramic caps:

Input capacitor DC voltage sensitivity

TABLE B-1: BILL OF MATERIALS (BOM)

ty	Reference	Description	Manufacturer	Part Number
2	C1, C12	CAP CER 0.1 µF 50V X7R 10% 0603	TDK Corporation	C1608X7R1H104K
ļ	C2, C3, C7, C8	CAP CER 10 µF 50V X7S 1210	TDK Corporation	C3225X7S1H106M
ļ	C5, C6, C10, C11	CAPACITOR, 1206, X7R, 16V, 10 µF	TDK Corporation	C3216X7R1C106K
2	CVCC, CVCC2	CAP CER 1 µF 16V 10% X7R 0603	TDK Corporation	C1608X7R1C105K
3	J1, J2, J3, J4, J5, J6, J7, J8	PC TEST POINT TIN SMD	Harwin Plc.	S1751-46R
	L1	CHOKE, SMD, 15 µH	Wurth Group	7447779115

Most ceramic capacitors are highly sensitive to DC voltage! At 30V this 10µF cap has <4µF

Hands-On Measurements

- 1. Input Impedance Measurement (No Filter)
- 2. Filter Impedance Measurement
- 3. Measure System Dynamics without Filter
 - Loop Gain Measurement
 - Transient Response
- 4. Add Input Filter
 - Impact on Loop Gain
 - Impact on Transient Response
- 5. Damping the Input Filter

References and Further Reading

[1] R. W. Erickson and D. Maksimovic, *Fundamentals of Power Electronics*, 2nd ed. 2001. Norwell, Mass: Springer, 2001.

[2] R. D. Middlebrook, Input filter considerations in design and application of switching regulators, IEEE Industry Applications Society Annual Meeting, October 1976, pp. 91-107

[3] Dean Venable, "Source-Load Interactions in Multi-Unit Power Systems", Venable Technical Paper #12

[4] Yuri Panov and Milan Jovanovic, Practical Issues of Input/Output Impedance Measurements in Switching Power Supplies and Application of Measured Data to Stability Analysis, Delta Power Electronics Laboratory
[5] OMICRON Lab, Input Impedance & Filter Stability, <u>https://www.omicron-lab.com/applications/detail/news/input-impedance-filter-stability/</u>

Feel free to ask questions via the Q&A function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: info@omicron-lab.com

Thank you for your attention!

