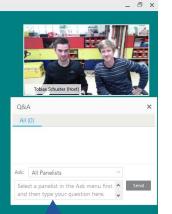


Bode 100 as Impedance Analyzer

OMICRON Lab Webinar Series 2020

2020-05-05

Webinar Hints


Open the Q&A function

We will record the presentation such that you can view it again later

OMICRON Lab Webinar Series 2020

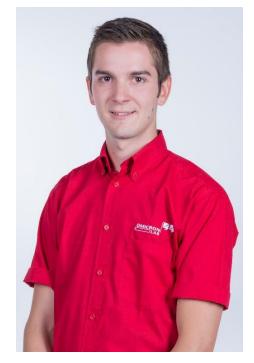
Send questions to the presenters

2020

OMICRO

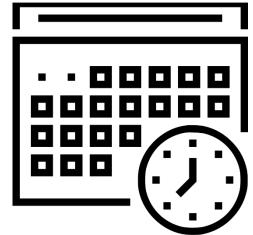
Florian Hämmerle

- Studied Mechatronics at Vorarlberg University of Applied Sciences
- Working at OMICRON Lab since 2010 in:
 - Technical Support & Applications
 - Product management



- Contact:
 - <u>florian.haemmerle@omicron-lab.com</u>
 - https://meet-omicron.webex.com/meet/florian.haemmerle

Tobias Schuster


- Completed electrical engineering college in 2013
- Studied Industrial Engineering and Management
- Working at OMICRON Lab since 2015 focusing on:
 - Technical Support
 - Applications
 - Sales
- Contact:
 - tobias.schuster@omicron-lab.com
 - https://meet-omicron.webex.com/meet/tobias.schuster

Agenda

- Passive components & equivalent circuits
- Bode 100 impedance measurement methods
- Calibration (user- & full-range)
- Why is it important to measure Cs
 - Live comparison measurement
- Why should we measure Ls
 - Live comparison measurement
 - Leakage inductance
- Additional hands-on live measurements

Passive Components

- Essential parts in analog circuits
- Inductor and capacitor used e.g. to store energy or to create filter circuits

Inductor:
$$v(t) = L \frac{di(t)}{dt}$$
 $X_L = \omega L$ $\frac{V}{I} = Z_L = j\omega L$
Capacitor: $i(t) = C \frac{dv(t)}{dt}$ $X_C = \frac{-1}{\omega C}$ $\frac{V}{I} = Z_C = \frac{1}{j\omega C}$

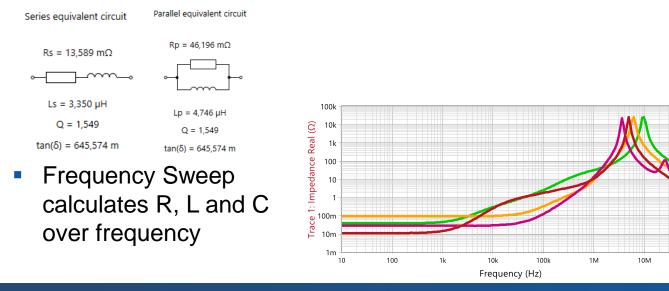
Theory and Reality

- Theoretically inductor and capacitor are purely reactive elements → No resistive behavior and therefore lossless
- In reality parasitics can strongly influence the real behavior especially at higher frequencies

Examples:

Inductor:

- Wire has resistance
- Windings form electric field
- Core is not lossless


- Capacitor:
- Plates are resistive
- Rolling of foils creates inductance
- Insulator not lossless

Equivalent Circuits

- Are used to model the real behavior of the components
- Different complexity of models
 - 1st order models are valid at one particular frequency
 - Fixed Frequency measurement shows R, L and C at one frequency

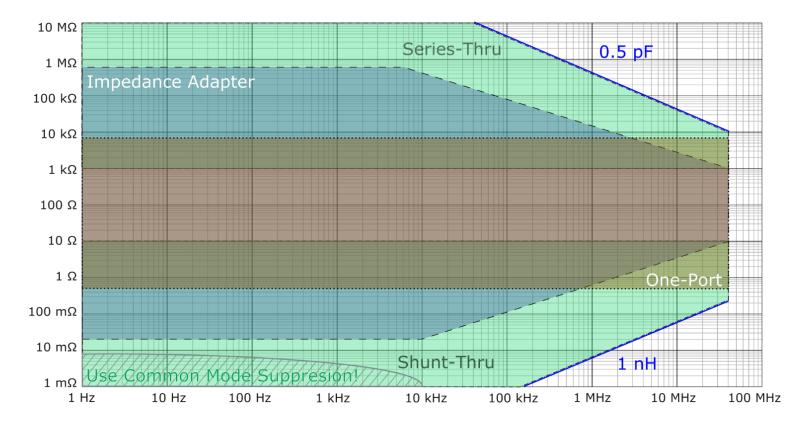
Equivalent Circuits

- Higher complexity models are valid for a frequency range
 - 2nd Order equivalent circuits for inductor and capacitor

- 3rd Order models (e.g. quartz crystal or piezo element) see Application Note:

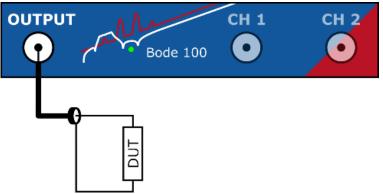
۲

- Equivalent Circuit Analysis of Quartz Crystals https://www.omicron-lab.com/application-notes/
- Parameter identification requires manual work or e.g. curve-fitting procedure


Сь≐

Bode 100 Impedance Measurement Methods

- One-Port Reflection
- Impedance Adapter (3-port technique)
- Shunt-Thru (2-port technique)
- Shunt-Thru with series resistance (similar to Shunt-Thru)
- Series-Thru (2-port technique)
- Voltage-Current Gain (3-port technique)
- External bridge (e.g. high impedance bridge)



Impedance Range Overview

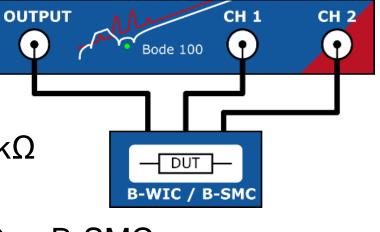
One-Port

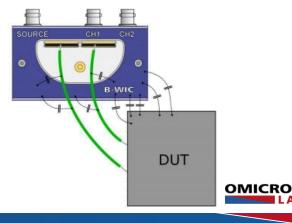
- Optimum range ≈ 0.5 Ω 10 kΩ
- Impedance/Reflection measurement at the output port
- One point is GND
- Can be calibrated with Open/Short/Load (O/S/L)

One-Port (Measurement Setup)

Solder to BNC connector

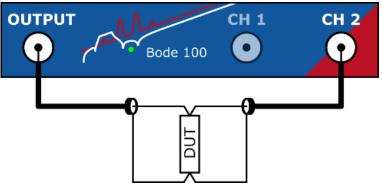
One-Port (Measurement Setup)


Use BNC to 4 mm adapter

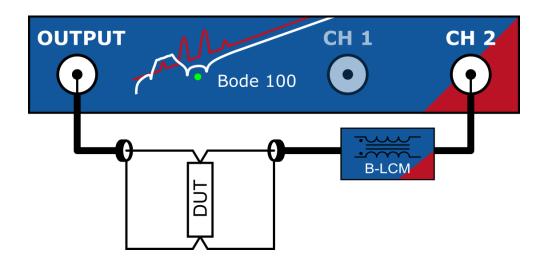


Impedance Adapter

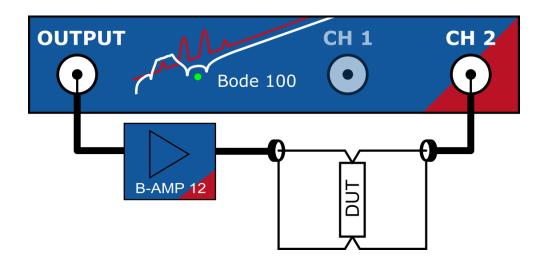
- Optimum range $\approx 20 \text{ m}\Omega 600 \text{ k}\Omega$
- Impedance measurement using
 the impedance adapters B-WIC or B-SMC
- DUT must not be connected to GND
- Must be calibrated with O/S/L
- Not for physically big components or long leads



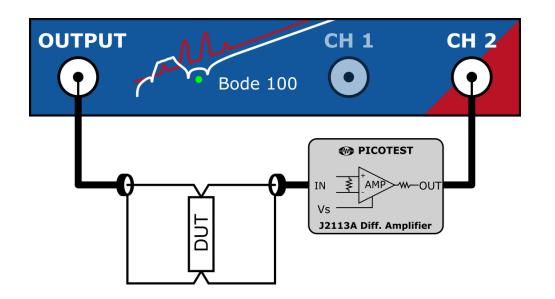
Impedance Adapter (Measurement Setup)


Shunt-Thru

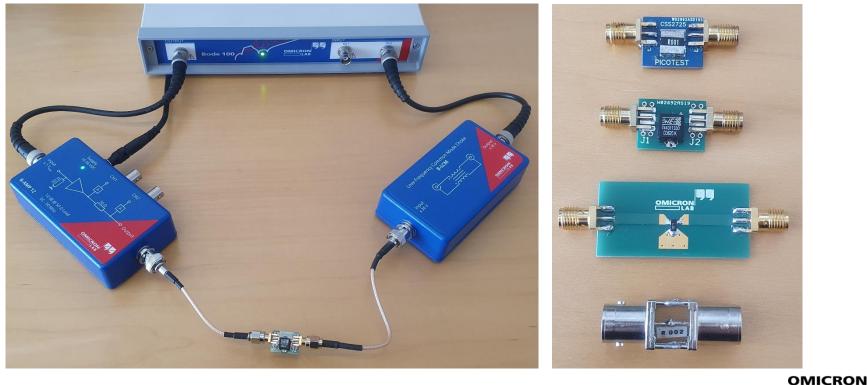
- Optimum range ≈ 1 mΩ 100 Ω
- Measure impedance using a 2 port shunt-thru setup in the 50 Ω system
- One point is GND
- Can be calibrated with Thru or O/S/L
- Attention: Ground-loop!



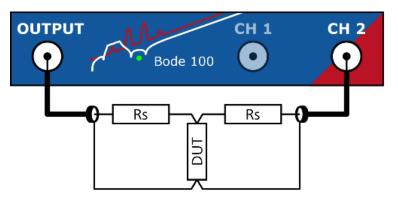
 with the B-LCM to suppress ground-loop error at low frequencies (< 10 kHz to 100 kHz)



 with the B-AMP 12 to amplify the output signal of the Bode 100 up to 25 dBm



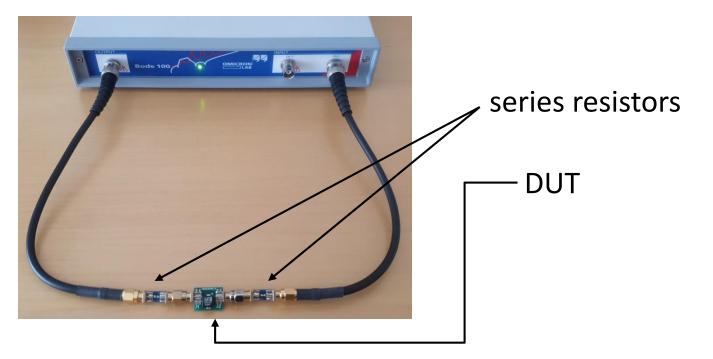
• with the Picotest J2113A differential amplifier to suppress ground-loop error at low frequencies



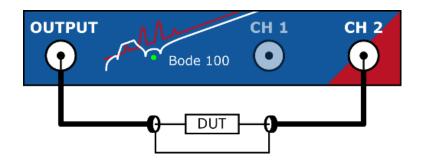
with B-AMP12 and B-LCM

Shunt-Thru with series resistance

• Optimum range depends on series resistors

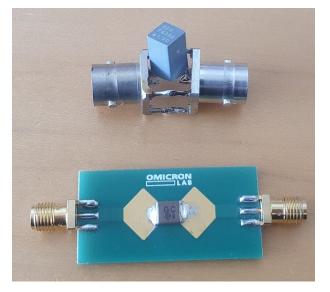

 $Rs = 200 \ \Omega \qquad -> \qquad 5 \ m\Omega - 1125 \ \Omega$

- $Rs = 499 \Omega$ -> 11 mΩ 2480 Ω
- One point is GND
- Must be calibrated
- Higher DC voltages possible
- Attention: Ground-loop!

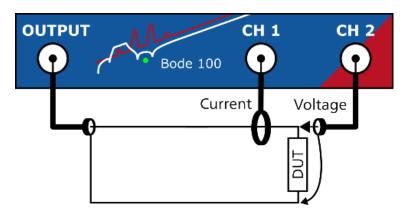

Shunt-Thru with series resistance (Measurement Setup)

using Picotest PITK01 boards

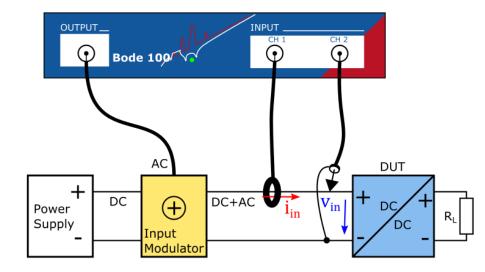
Series-Thru


- Optimum range $\approx 1 \text{ k}\Omega 1 \text{ M}\Omega$
- Measure impedance using a 2 port series-thru setup in the 50 Ω system
- DUT must not be connected to GND
- Can be calibrated with Thru or O/S/L

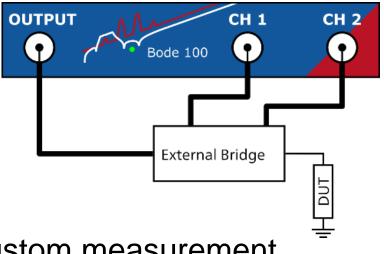
Series-Thru (Measurement Setup)


 with the B-AMP 12 to amplify the output signal of the Bode 100 up to 25 dBm

Voltage / Current



- Range depends on probes
- Measure impedance by using a voltage probe at CH2 and a current probe at CH1
- Can be calibrated with Thru or O/S/L


Voltage / Current (Measurement Setup)

• e.g. for input or output impedance measurement

External Bridge

- Range is variable
- Measure impedance using a custom measurement bridge
- Must be calibrated with O/S/L

External Bridge (Measurement Setup)

• high impedance bridge

User-Range / Full-Range Calibration

User Range Calibration

Calibrates at exactly the frequencies that are currently measured

+ No interpolation \rightarrow suitable for narrowband probes

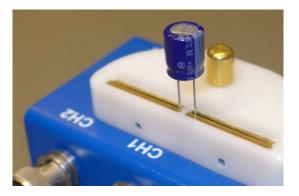
• Full-Range Calibration

calibrates at pre-defined frequencies and interpolates in-between

+ Calibration does not get lost when frequency range is changed

Why is it important to measure capacitors?

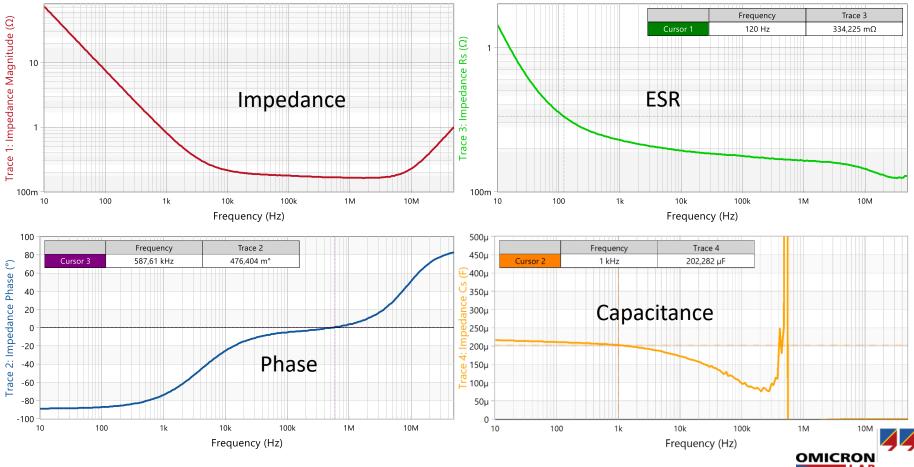
- A capacitor is **NEVER** just a capacitor
- Capacitor ESR influences the phase margin of power supplies
- Capacitor ESR influences the output ripple at the switching frequency of a SMPS
- ESR can change over Frequency
- Capacitors are inductors above their resonance frequency



What does the data sheet tell us?

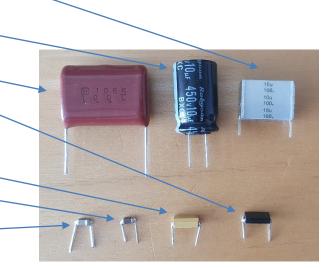
220 µF aluminum capacitor

Standard Products													
W.V.	Cap. (±20 %)	Case size		Specification		Lead Length					Min. Packaging Q'ty		
		Dia.	Length	Ripple			Lead Space		се				
				(IZU HZ)			Straight	Taping * B	Taping * i	Part No.	Straight Leads	Taping	
(V)	(µF)	(mm)	(mm)	(mA r.m.s.)		(mm)	(mm)	(mm)	(mm)		(pcs)	(pcs)	
	220	10	12.5	400	0.12	0.6	5.0	5.0		ECA1HM221()	200	500	



 $C = 220 \mu F (\pm 20\%)$

 $ESR = \frac{\tan(\delta)}{\omega C} = \frac{0.12}{2\pi \cdot 120 Hz \cdot 220 \mu F} = 720 \text{ m}\Omega @ 120 Hz$


This is what the measurement tells us

Live Comparison Measurement

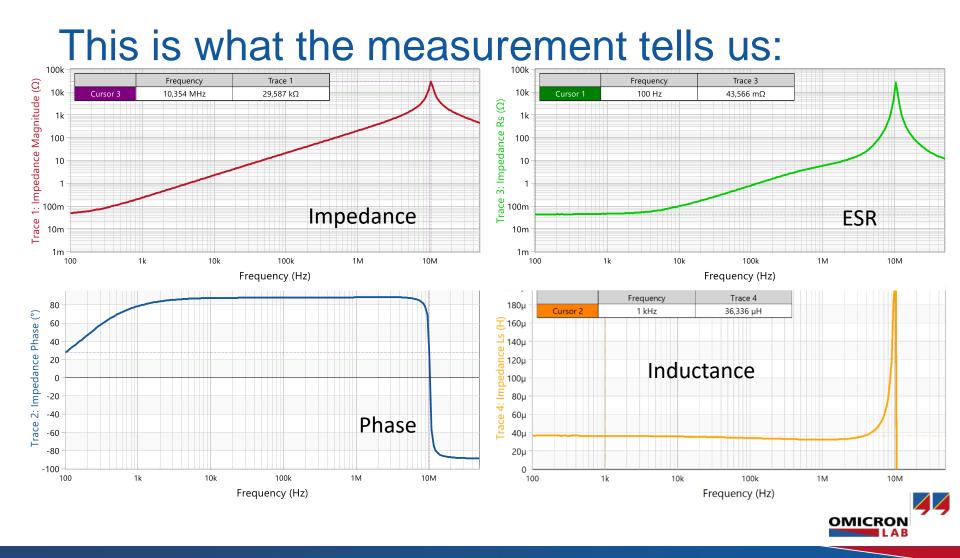
Measurement of different types of 10 μ F capacitors

- film (MKT / PET) -
- aluminum -
- film (PET)
- aluminum polymer
- tantalum -
- ceramic (X5R)
- ceramic (X7R)

Why should we measure inductors?

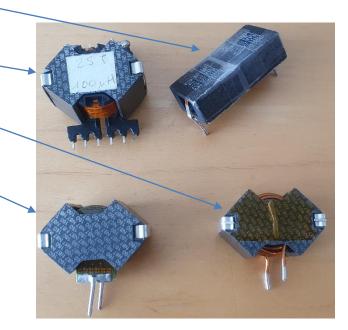
- An inductor is **NEVER** just an inductor
- AC resistance <> DC resistance
 - skin effects
 - "Eddie Currents"
- Inductors have resonance frequencies
- Inductors with magnetic cores can have core losses

What does the data sheet tell us?


33 µH shielded power inductor

Properties	Test conditions		Value	Unit	Tol.
Inductance	1 kHz/ 250 mV	L	33	μH	±20%
Rated current	∆T = 40 K	۱ _R	2.68	А	max.
Saturation current	I∆L/LI < 10%	I _{sat}	3.00	А	typ.
DC Resistance	@ 20°C	R _{DC}	0.049	Ω	typ.
DC Resistance	@ 20°C	R _{DC}	0.057	Ω	max.
Self resonant frequency		f _{res}	11	MHz	typ.

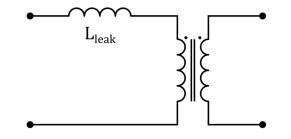
$$\begin{split} H &= 33 \mu H \ (\pm 20\%) \ @ \ 1 \ kHz \\ R_{DC} &= 0,049 \ \Omega \ (typ.) \\ R_{DC} &= 0,057 \ \Omega \ (max.) \\ f_{res} &= 11 \ MHz \end{split}$$



Live Comparison Measurement

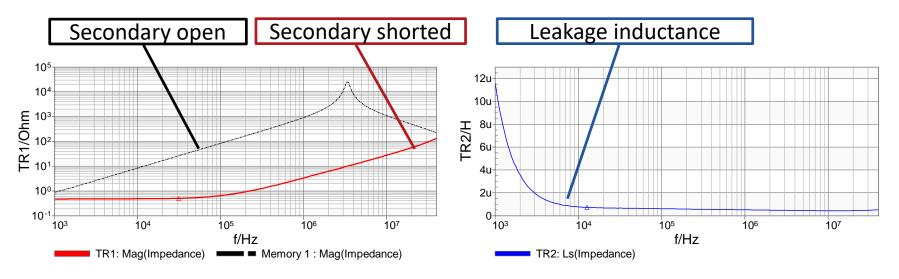
Measurement of different types of 100 μ H inductors

- SMD flat band
- litz wire –
- copper wire
- planar coils (PCB winding structure)



Flyback Transformer Leakage Inductance

- Not all flux generated by the primary winding is coupled to the secondary winding
 - some flux leaks
 - some contributes to core losses
- Represented by a series inductance in the circuit
- Leakage inductance creates a voltage spike when turning off current through primary side (flyback converter)



Measuring Leakage Inductance

Leakage inductance is measured by shorting all other windings except the primary winding

 \rightarrow Leakage inductance is not constant over frequency

Additional Hands-On Live-Measurements

- Shunt-Thru measurement of
 - mΩ resistor
 - low ESR capacitor

• Series-Thru measurement

Summary

- Component parasitics are important to understand real life circuit behavior
- Models considering parasitics allow better simulation
- Measuring components can tell us more than the data sheet says

References and Further Reading

[1] OMICRON Lab, Bode 100 User Manual, <u>https://www.omicron-lab.com/downloads/vector-network-analysis/bode-100/</u>

[2] OMICRON Lab, Impedance Measurement Application Notes, <u>https://www.omicron-lab.com/applications/vector-network-</u> <u>analysis/application-notes/#cuid1:pathGroup=.cuid10</u>

Feel free to ask questions via the Q&A function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: info@omicron-lab.com

Thank you for your attention!

