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 SPICE is a linear solver in essence: any nonlinear behavior must be linearized

 SPICE samples at a variable timestep: it adjusts its course based on signals shapes

 Flat type of waveform: large timesteps are taken

 Change occurs: timestep reduction until enough precision is obtained

The SPICE Engine
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Large steps
Reduction
in steps

Reduction
in steps

o Timestep control algorithm is an essential 
part of the engine:

 It controls the number of iterations to find a 
solution

 It checks that timestep reduction brings a 
precise solution – jump to next point or fail!

Highly time-consuming process!



 A diode is a nonlinear device affected by a variable dynamic resistance rd

 SPICE will have to linearize the component at every change in operating point

A Piece-Wise Linear Approach – Diode Example
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A Switching Converter is a Nonlinear System
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 A switching converter is exhibiting linear characteristics during ton and toff

 The toggling event between the two networks introduces a discontinuity

Averaged
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 An averaged model excludes the switching component by construction

 The simulation time is flashing and some models operate in ac and transient analyses

 What if I don’t have an averaged model for my particular converter?

The Need for an Averaged Model

o Always verify bias point!

 Target is 5 V: Vout = 5 V



An Accurate Bode Plot

 When the simulation is fine-tuned, matching with laboratory experiments is excellent

 One of the keys for success is to precisely extract parasitics such as capacitors ESRs

ESR: equivalent series resistance

Peaking mismatch

 Tweak your model until it reflects hardware measurements for high-fidelity simulations

 With a validated model, you can explore stability margins on the computer
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Control-to-output transfer function of the voltage-mode buck converter



A Frequency Response Analyzer with SPICE

 Some SPICE packages such as LTspice offer a means to measure the loop

 The circuit is switching and a signal is injected for ac-modulating the converter

 The source must be of sufficiently-low amplitude to avoid saturation

 Works ok for a narrow analysis 
band around crossover – starts 
at 15 kHz up to 30 kHz in this 
example

 Simulation time can be long, 
especially if one wants to 
reveal sharp resonances

 How to simulate PFC stages 
with sweep starting below 1 
Hz and a 10-Hz crossover?
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A Time-Domain Simulator

 SIMPLIS is a time-domain simulator and operates with switching components

 Ac analysis is carried over a switching converter: no need for an averaged model

 Frequency response is revealed the same way as if it were carried in the laboratory
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 SIMPLIS uses a PWL approach where a component is modeled through segments

 Any change in operating point is modeled as a transition to another segment

 At any instant in simulation time, the system is always linear!

Two Segments are Enough for a Diode

A two-segment model A three-segment model

More
segments
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Piece-Wise Linear Modeling of all Components

 Components can be modeled with accuracy to reflect real operating waveforms

 By selecting different levels, it is possible to gradually improve precision
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Passive Elements include Parasitics
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 Typical elements such as capacitors can embark parasitics such as ESR or ESL

 Select the model level between 0 (the simplest) and 3 (the most comprehensive)

 Avoid over-populating your schematic with hidden properties

 You can also model bias-dependent capacitors



Voltage- or Current-Dependent Passive Elements

 You can model any sort of behavior with a PWL element: resistor, capacitor or inductor

 A PWL resistor models a diode with a specific threshold and a dynamic resistance rd

 A saturating inductor showing the effects of too high a peak current

 Use realistic numbers for slopes, e.g. 10-100 m not 1 p!
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 It is important to visualize the effects of core saturation in a simple way

 SPICE models featuring hysteresis effects like Jiles-Atherton are complicated to handle

 A few PWL lines and you have the shape of a saturating inductor

A Saturating Inductor is Easy to Model
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Constant-Power Current Source

 A constant-power source is useful to determine the ripple current in a bulk capacitor

 Using Excel, it is possible to determine the absorbed current based on the on-going bias
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 You can assess the rms current in the capacitor in worst-case situations

 Check the valley voltage corresponding to the minimum rectified dc input voltage



Peak and Valley Voltages

 The valley voltage at the lowest input mains (85 V rms) is 64 V dc
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Valley = 64 V

 Design the converter for operating down to 64 V ( 55 V with margins)

 Failure to do so: output ripple, loss of regulation, protection latch

Constant power
absorbed by the
dc-dc converter

Rectified ripple
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dt

Ripple current 
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IC,rms = 1.6 A



 A converter needs time to reach its steady-state regulated output

 Depending on compensation, the op-amp rails up and takes time to recover

 There can be a large overshoot which may need hundred of millisecond to damp

Transient Time and Steady-State Operations
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 Analysis should take place once the transient period is over: how long can it take?

Transient period Steady state
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 SIMPLIS uses a unique algorithm to meet the steady-state point in a record time

 The POP determines with the highest precision when the circuit is stabilized:

Average voltage across inductors is 0 V and average current in capacitors is 0 A

Periodic Operating Point or POP

 The POP trigger will synchronize the engine with the start of each periodic cycle

 A typical output can be a clock or a driver output for instance

Place the pop trigger
on the schematic



 When launched, the process finds the operating point very rapidly

 Once at steady-state, small-signal analysis can be initiated

Find Steady-State Operation in a few Seconds
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 Select maximum switching period and instruct the engine when it starts its POP process

 The clock here is 100 kHz, then choose 15 µs and go for 5 switching cycles

The Process of Finding the Right Point

1 2 3 4 5

Starts
POP

Done!

You can select various analyses from this panel
> > > > >



 SIMPLIS while performing POP calculation explores so-called topologies

 A topology represents a unique state which is solved and recorded

 As simulation progresses, known topologies are retrieved and reused to proceed

Topology Changes

One topology

Another topology

1st pass unsuccessful

2nd pass successful
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During simulation, multiple topologies are explored



Agenda

 SPICE and Power Converters

 The SIMPLIS Approach

 Transfer Functions

 Power Factor Correction

 Interactions with EMI Filter

 Monte Carlo Analysis

 Design Example of a Flyback Converter



 As long as a POP analysis is successful, small-signal analysis can be obtained

 Obtain frequency response like control-to-output, or loop gain/phase in seconds

 Work with all switching converters and those without an averaged model (LLC)

Running Small-Signal Analysis

 A pulse-width modulator (PWM) is added to the sketch for duty ratio modulation

 Set source V3 to 1 and SIMPLIS automatically controls its amplitude



The Steady-State Waveforms are First Obtained

 You can immediately verify that variables are within the expected range

 Measurements are available such as rms, average or peak values
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 The Bode plot for the power stage is obtained in a fraction of seconds

 Same for the PWM section which shows the effects of the propagation delay

 The 100-ns pure delay makes the converter a non-minimum phase system

Power Stage Response is the First Step
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 In the laboratory, it is difficult 
to physically open the loop 
especially in high-gain systems

 Perturbing the system while 
operating in closed-loop is the 
way to go

 The ac source is of fixed 
amplitude and does not need 
adjustment

 The same circuit can be used 
for ac or transient tests

Closed-Loop Simulations
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 If the current loop is not properly compensated, instability at Fsw/2 can happen

 By reducing the gain of the inner current loop, oscillations can be tamed

Current Mode and Subharmonic Oscillations
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 It is possible to write macros automating components values calculations

 Read the power stage magnitude and phase at the selected crossover frequency

Automatic Compensation is Possible

*
.VAR Vin=12
.VAR Vout=5
.VAR L=100u
.VAR Ri=160m
.VAR Ts=10u * please update clock and ramp generators *
*
.VAR Gfc=-20 * magnitude at crossover *
.VAR PS=-40 * phase lag at crossover *
*
* Enter Design Goals Information Here *
*
.VAR fc=10k * targetted crossover *
.VAR PM=60 * choose phase margin at crossover *
*
.VAR Sn={((Vin-Vout)/L)*Ri}
.VAR Sramp={1/Ts}
.VAR mc=1.5 * set this value for ramp comp *
.VAR Se={(mc-1)*Sn}
.VAR kr={Se/Sramp}
*

* Enter the Values for Vout and Bridge Bias Current *
*
.VAR Ibias=1m
.VAR Vref1=2.5
.VAR Rlower={Vref1/Ibias}
.VAR Rupper={(Vout-Vref1)/Ibias}
*
* Do not edit the below lines *
.VAR boost=PM-PS-90
.VAR G=10^(-Gfc/20)
.VAR fp=(tan(boost*pi/180)+sqrt((tan(boost*pi/180))^2+1))*fc
.VAR fz=fc^2/fp
.VAR a=sqrt((fc^2/fp^2)+1)
.VAR b=sqrt((fz^2/fc^2)+1)
.VAR R2=((a/b)*G*Rupper*fp)/(fp-fz)
.VAR C1=1/(2*pi*R2*fz)
.VAR C2=C1/(C1*R2*2*pi*fp-1)
*

*
{ '*' }
{ '*' }
{ '*' } Rupper = {Rupper}
{ '*' } Rlower = {Rlower}
{ '*' } R2 = {R2}
{ '*' } C2 = {C2}
{ '*' } C1 = {C1}
{ '*' } Boost = {boost}
{ '*' } Fz = {Fz}
{ '*' } Fp = {Fp}
{ '*' } Sn = {Sn}
{ '*' } Se = {Se}
{ '*' } kr = {kr}
{ '*' }

Pole-zero calculation

Display values
In the netlist

Determine the amount of compensation



Meeting the Right Crossover in a few Seconds

 SIMPLIS calculates the compensation values based on the adopted strategy

 It is then easy to explore other approaches with different crossover, margins etc.

*
* Rupper = 2500
* Rlower = 2500
* R2 = 84484.6310392954
* C2 = 5.34187416193801e-10
* C1 = 2.24506484641772e-10
* Boost = 10
* Fz = 8390.9963117728
* Fp = 11917.5359259421
* Sn = 11200
* Se = 5600
* kr = 0.056
*

Simulator menu

cf

m

 T f

 T f

Compensated loop gain T(f)



 With a clock source, cheat SIMPLIS and obtain ac-response of non-switching circuits

 A typical application is an automated compensator

SIMPLIS is a Time-Domain Simulator
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*
* Enter the Values for Vout and Bridge Bias Current *
*
.VAR Vout=12
.VAR Ibias=2m
.VAR Vref1=2.5
.VAR Rlower=Vref1/Ibias
.VAR Rupper=(Vout-Vref1)/Ibias
*
* Do not edit the below lines *
.VAR boost=PM-PS-90
.VAR Kf=(tan((boost/4+45)*pi/180))^2
.VAR fz1=fc/sqrt(Kf)
.VAR fz2=fc/sqrt(Kf)
.VAR fp1=fc*sqrt(Kf)
.VAR fp2=fc*sqrt(Kf)
*
.VAR G=10^(-Gfc/20)
.VAR a=sqrt((fc^2/fp1^2)+1)
.VAR b=sqrt((fc^2/fp2^2)+1)
.VAR c=sqrt((fz1^2/fc^2)+1)
.VAR d=sqrt((fc^2/fz2^2)+1)
.VAR R2=((a*b/(c*d))/(fp1-fz1))*Rupper*G*fp1
.VAR C1=1/(2*pi*fz1*R2)
.VAR C2=C1/(C1*R2*2*pi*fp1-1)
.VAR C3=(fp2-fz2)/(2*pi*Rupper*fp2*fz2)
.VAR R3=Rupper*fz2/(fp2-fz2)
.VAR G0=((R2*C1)/(Rupper*(C1+C2)))*c*d/(a*b) * Gain at fc sanity check *
*

Automatic bias point calculation
Clock generator – Nyquist
criterion applies
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errV
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 The simulation confirms the applied voltage for regulation is 12 V

 Frequency response shows the wanted 10-dB gain at 1 kHz

Confirming Bias Point and Frequency Response
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 Bias applied at the op-amp divider

 Op-amp output within its linear range
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Explore Complicated Converters

 Any converter can be simulated to determine the control-to-output transfer function

 Start with a simple circuit for which the POP is easily obtained

 Then add more comprehensive models to see 2nd- and 3rd-order effects

N:1:1

SONiC - 3.5 kW - 48 V/73 A
Christophe Basso - Future Electronics
NCP4390 controller
October 2021 - Rev. 0.1
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Obtain the Transfer Function Instantly

 Any converter can be simulated to determine the control-to-output transfer function

 Start with a simple circuit for which the POP is easily obtained

 Then add more comprehensive models to see 2nd- and 3rd-order effects
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Power stage small-signal response Compensated loop gain (10 kHz fc)

cf
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Power Factor Correction

 Power factor correction simulation places a heavy burden on computers

 High-frequency events spread across several tens of mains cycles imply simulation power

 SPICE users simulate only a small portion of the operations
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Averaged Model Alternative

 Averaged models are an alternative for transient and ac analyses

 The switching component has disappeared and they simulates fast

 Convergence issues are likely to appear depending on model robustness

Averaged model of the single-stage QR flyback converter
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Cycle-by-Cycle Simulations with SIMPLIS

 SIMPLIS lets you examine the frequency response using a fixed dc bias

 This dc level equals the rms value of the input voltage, e.g. 230 V dc for a 230-Vac input

 You can test the operating point and obtain the small-signal response in a few seconds

IC=1
R31

R5
{R2}

U3

V6

S2

Q

QN

R

S

U35

P1

TX2

S1

{Vref1}

V4

R6
{Rupper}

230
V1

V5

AC 1

V3

10m

R4
250m

IC=1
R3

V2

100m

D Q

QN

RST

SET

U2
S1

U1

X1

R8
100m

IC=1
R9

VA

C3
{C1}

VOUT

Duty Cycle

Duty ratio
IN

VB

Ct

L1
200u IC=0

VB

DRV

D2

mr756

G1

{gm}

IN OUT

=OUT/IN

IN OUT

=OUT/IN

VA

Frequency

Frequency
IN

IN OUT

=OUT/IN

DRV

R1
1K

IC=1
R10

R11
{Rlower}

R2

22k

VB

VA

VB

FB

 +

Ct

1n IC=0

275u

I1

DRV

FB

I2

IL

DRV

D1

mr756

 + C10
22p IC=1

 + C13
150u IC=0

 +

C2
{C2} IC=1

FB

C8
47p IC=0

FB

 Works for operating point 
determination

 Can give the small-signal 
response of the control-
to-output transfer 
function

 Simulates in 1 s!

QR engine

Compensator

230 V dc for a
230-V rms input

Constant on-time VM boost converter



Operating Point and Ac Response

 The operating point lets you check that the converter regulates properly

 The POP process works fine with the dc input but would fail with a sinewave input

 Use multi-tone ac analysis instead 
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Compensated loop gain, Vin = 230 V
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Transient Simulations

 With a sinusoidal input you can run simulations in the long range

 Check input current distortion and transient response in different conditions
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Dynamic Performance 

 The transient response can be quickly assessed at low- and high-line input voltages

 The available granularity allows you to zoom-in and precisely look at switching events

200-mA load step at Vin = 265 V rms 200-mA load step at Vin = 100 V rms



Explore Distortion and Harmonic Limits

 SIMPLIS lets you interpolate data and choose different apodization windows

 You can also easily evaluate the input current distortion

 INi t

Vin = 100 V rms

(A)

(Hz)
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 A converter fed by an EMI filter will see its transfer functions affected:

 The control-to-output transfer function can have degraded margins

 The output impedance of the converter can be significantly changed

 Always confirm stability is not at stake when the filter is installed

Impedance Association

 thZ s  inZ s

ˆ
gv

ˆ
outv 2H s
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A Negative Resistance

 The incremental or small-signal resistance of a closed-loop converter is negative

 When associated with an EMI filter, a mechanism for oscillations exists

 Considering a 100%-efficient converter, we have:
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A Simple Example
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 If ohmic losses are gone, the 

damping ratio is zero, Q is infinite.

 Losses in the EMI filter are illustrated by a damping ratio  or a quality factor Q

 If losses are exactly compensated by a negative resistance, you built an oscillator
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 The front-end filter and the downstream converter can be modeled with a minor loop

 This loop reflects the action of an impedance divider

Conditions for Stability
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 In this particular arrangement, the Nyquist criterion applies for stability assessment
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 Once the EMI filter has been determined, you must plot its output impedance

 Check the presence of peaks in the transfer function

 Calculate the necessary damping in case of too high a peaking

Simulating an Output Impedance
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 You must now check the input impedance of the converter once stabilized

 Identify the overlap areas and check if sufficient margins exist

 If margins are too thin or if overlaps exist, filter damping is mandatory

Simulate the Closed-Loop Input Impedance
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Check Input Voltage in Load Step

 Once the filter is installed, check the transient response to see the effects

 With current-mode control, oscillations may be observed on the input rail

Transient response without EMI filter Transient response with EMI filter
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 outv t

 outi t

 FBv t

 inv t

 outv t



 It is possible to show that an optimal RC damper exists to reduce the peaking

 Determine the values of R and C to meet a maximum peak of 20 dBΩ or 10 Ω

 Based on R.D. Middlebrook method, R = 6 Ω and C = 5.45 µF

Optimally Damping the Filter
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C. Basso, Input Filter Interactions with Switching Regulators, APEC Professional Seminar, Tampa (FL), 2017

 Rather than determining R alone and 
making C 10x the EMI cap., determine the 
optimal RC couple to meet the wanted peak

target

result



 The RC network is installed across the original capacitor

 Watch for power dissipation as R12 will dissipate ac power

Damper is Installed and Oscillations are Tamed

The damper is installed across 
the original EMI capacitor The transient response is clean

 outi t

 FBv t

 inv t

 outv t



 When power stages are associated, check interaction between converters

 The criterion involving the output and input impedance applies

Cascading Converters
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 You must individually plot output and input impedances of the boost and buck stages

 Then check the stability of the downstream converter in different operating conditions

A Stable Response
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 The loop gain of a converter involves a power stage and a compensator

 The power stage response is affected by parasitics and the modulator stage

 The compensator response depends on components tolerances including the op-amp

 How will crossover, phase and gain margins be preserved along the production cycle?

Transfer Function Sensitivity
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 A Monte Carlo analysis is a multivariate modeling technique

 Assign tolerances to components, see how combinations affect a variable

 Check dispersion on crossover frequency, phase and gain margins

Statistical Parameters Variations

 Chose distribution type like gaussian (normal), uniform or corner (WCA)

gauss(tol) unif(tol) WC(tol)

C. Hymowitz, Monte Carlo Gone Wrong, https://www.edn.com/monte-carlo-gone-wrong/



 You need to place specific probes instructing what parameters to record

 We want to check margins versus components variations

Monte Carlo Steps

Transfer function
measurement

Measurement
probes

 Install special probes with a dedicated goal function

 Pick the right goal function in the list like PhaseMargin, GainMargin etc.

Goal functions



 Simulations can be run through the Monte Carlo menu using several computing cores

Running the Simulations
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 SIMPLIS will build the histogram representation of the parameters we’ve selected

 In this example, all the margins are safe and crossover variations remain narrow

Histogram Representation

Crossover Phase margin Gain margin
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 We are going to design a universal-mains 60-W flyback converter delivering 12 V/5 A

 The study is divided in three parts: front-end, converter and control loop

Designing a Flyback Converter
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 The mains is rectified with a diode bridge and converted to a dc voltage

 A bulk capacitor plays the role of an energy reservoir when the input sine decreases

 The utmost important parameter is the worst-case rms current

The Front-End Rectifying Section
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 The load is the downstream converter which keeps a constant output power

 This is important to increase the absorbed current as the rectified voltage drops

Implement a Constant-Power Load
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 A PWL resistance mimics the constant-power load with values calculated by Excel



 The converter shall deliver its nominal current down the rectified valley voltage

 It can imply an oversize of the converter if the ripple is too large – OPP issue

 Increasing the bulk capacitance is a possibility to increase the minimum voltage

Determining the Valley Voltage

Valley 
voltage 
is 70 V

 Ci t

 Cv t

OPP: overpower protection



Check Hold-Up Time

 If the mains disappears, the bulk capacitor must maintain the dc rail for some time

 The converter shall continue operation for 10 ms in the worst case

 You may need to increase the capacitance to meet this goal

 Cv t
 The 180-µF capacitor brings 14 ms of hold-up time

 Rms current is 1.1 A and 88 V is the valley at 85 Vac

Mains 
disappears

100 V rmsinV 

50 V BO



 The primary-side inductance sets the operating mode at nominal load current

 Too small an inductance yields to a high peak current and large conduction losses

 Too high the inductance will lead to slow converter with a low-frequency RHPZ

Determine Primary Inductance Value

RHPZ: right-half-plane zero
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 It is important to assess the secondary-side rms current

 Determine power dissipated in the diode

Determine Secondary-Side Ripple
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 The current-mode structure compensation can be automated

 Verify the operating point is correct at the lowest input voltage (88 V) 

Simulating the Basic Converter

 Vout =  12 V
 Iout = 5 A

Leakage and
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Looking at the Compensation Strategy

 A current-mode converter can be stabilized with a type 2 compensator

 It can boost the phase up to 90° with a zero and a pole adequately placed

 Start with the frequency response at the lowest dc input voltage

 H f

 H f

 2 kHz 7 dBH  

 2 kHz 75H   

Vin = 88 V, Iout = 5 A 

Automate
calculations

From  Bode plot



 The type 2 compensator can be built around a TL431 and an optocoupler

 The optocoupler exhibits a current transfer ratio and a low-frequency pole

 Always thoroughly characterize the optocoupler including its ac response

The Compensation Path Includes the Optocoupler
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 Once the stabilization strategy is selected, check crossover and phase margin

 Verify margins in low- and high-line operating conditions

Assess Compensated Open-Loop Gain
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 Once the converter is stabilized and shows good margins, run transient tests

 Check undershoots are acceptable for the downstream load

Transient Response at Low- and High-Line Inputs
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 It is now interesting to look at the same converter but powered from the mains

 See the effect of input ripple on variables

Look at the Big Picture
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 The start-up sequence takes a simulation time of 30 s for a 100-ms run

Looking at the Start-Up Sequence

Bulk capacitor current

High-voltage rail

Clamp voltage overshoot

Check BVDSS

margin

Vin = 85 V rms

Output current

Sec-side current

Clamp voltage

CS voltage

Output voltage



 The bulk rms current is made of low- and high-frequency ripple

Check the Contribution of the Combined Currents

Vin = 85 V rms

(A)

(V)

 
bulkCi t

 bulkv t

100 kHz



Ready-Made Templates

 My last book on transfer functions covers numerous switching topologies

 120+ examples are now available in a free ZIP files you can download

 Most of these circuits run on the demonstration version of SIMPLIS!   
http://powersimtof.com/Downloads/Book/Christophe Basso SIMPLIS Collection.pdf

https://stairwaypress.com/product/transfer-functions-of-switching-converters/
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Conclusion

 Simulating your power supply is an important part of the design flow

 SPICE simulation is an option but simulation time and lack of switching ac analysis is a problem

 SIMPLIS with its PWL engine delivers results in a flashing time

 An averaged model is no longer necessary and ac response is available from switching circuits

 It is a particularly-interesting feature for resonant converters for which modeling is difficult

 SIMPLIS allows you to test digital compensators and check coefficient values before coding

 Quick simulation is also a tremendous advantage for power correction circuits


