An Introduction to Power Supply Simulations with SIMPLIS

Christophe Basso
Business Development Manager
IEEE Senior Member

V13 $3^{\text {th }}$ Omicron Symposium
April 17 th 2024

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

The SPICE Engine

- SPICE is a linear solver in essence: any nonlinear behavior must be linearized
- SPICE samples at a variable timestep: it adjusts its course based on signals shapes
> Flat type of waveform: large timesteps are taken
$>$ Change occurs: timestep reduction until enough precision is obtained

- Timestep control algorithm is an essential part of the engine:
\checkmark It controls the number of iterations to find a solution
\checkmark It checks that timestep reduction brings a precise solution - jump to next point or fail!

Highly time-consuming process!

A Piece-Wise Linear Approach - Diode Example

- A diode is a nonlinear device affected by a variable dynamic resistance r_{d}
- SPICE will have to linearize the component at every change in operating point

A Switching Converter is a Nonlinear System

- A switching converter is exhibiting linear characteristics during $t_{o n}$ and $t_{o f f}$

- The toggling event between the two networks introduces a discontinuity

The Need for an Averaged Model

- An averaged model excludes the switching component by construction
- The simulation time is flashing and some models operate in ac and transient analyses
$>$ What if I don't have an averaged model for my particular converter?

An Accurate Bode Plot

- When the simulation is fine-tuned, matching with laboratory experiments is excellent
- One of the keys for success is to precisely extract parasitics such as capacitors ESRs

Tweak your model until it reflects hardware measurements for high-fidelity simulations
\checkmark With a validated model, you can explore stability margins on the computer

A Frequency Response Analyzer with SPICE

- Some SPICE packages such as LTspice offer a means to measure the loop
- The circuit is switching and a signal is injected for ac-modulating the converter
$>$ The source must be of sufficiently-low amplitude to avoid saturation

\checkmark Works ok for a narrow analysis band around crossover - starts at 15 kHz up to 30 kHz in this example
\checkmark Simulation time can be long, especially if one wants to reveal sharp resonances
\checkmark How to simulate PFC stages with sweep starting below 1 Hz and a $10-\mathrm{Hz}$ crossover?

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
= Design Example of a Flyback Converter

A Time-Domain Simulator

- SIMPLIS is a time-domain simulator and operates with switching components
- Ac analysis is carried over a switching converter: no need for an averaged model
- Frequency response is revealed the same way as if it were carried in the laboratory

Ac source

Injection transformer

Two Segments are Enough for a Diode

- SIMPLIS uses a PWL approach where a component is modeled through segments
$>$ Any change in operating point is modeled as a transition to another segment
$>$ At any instant in simulation time, the system is always linear!

Piece-Wise Linear Modeling of all Components

- Components can be modeled with accuracy to reflect real operating waveforms
- By selecting different levels, it is possible to gradually improve precision

\int Extract MOSFET Parameters			?	\times
Description The SIMPLIS MOSFET model can be extracted from an installed SPICE model, or can be manually entered by dicking on the User-defined button.				
Model type Extracted User-defined	Model extraction test con SPICE Model Drain to source voltage Gate drive voltage Drain current Model temperature Model level Limit maximum off r Maximum off resistanc Show extracted PWL	ditions IRF530 1 k 15 200 25 0 0 1 poorvey waveforms	${ }^{\circ} \mathrm{C}$	
	Extract	Cancel	Help	

Passive Elements include Parasitics

- Typical elements such as capacitors can embark parasitics such as ESR or ESL
- Select the model level between 0 (the simplest) and 3 (the most comprehensive)

N
Level 3

Voltage- or Current-Dependent Passive Elements

- You can model any sort of behavior with a PWL element: resistor, capacitor or inductor
\Rightarrow A PWL resistor models a diode with a specific threshold and a dynamic resistance r_{d}
$>$ A saturating inductor showing the effects of too high a peak current
\checkmark Use realistic numbers for slopes, e.g. 10-100 m Ω not $1 \mathrm{p} \Omega$!

A Saturating Inductor is Easy to Model

- It is important to visualize the effects of core saturation in a simple way
- SPICE models featuring hysteresis effects like Jiles-Atherton are complicated to handle
\checkmark A few PWL lines and you have the shape of a saturating inductor

Constant-Power Current Source

- A constant-power source is useful to determine the ripple current in a bulk capacitor
- Using Excel, it is possible to determine the absorbed current based on the on-going bias

\checkmark You can assess the rms current in the capacitor in worst-case situations
\checkmark Check the valley voltage corresponding to the minimum rectified dc input voltage

Peak and Valley Voltages

- The valley voltage at the lowest input mains (85 V rms) is 64 V dc

Ripple current in the capacitor: $I_{C, \text { rms }}=1.6 \mathrm{~A}$

Constant power absorbed by the dc-dc converter

Rectified ripple voltage

- Design the converter for operating down to 64 V ($\approx 55 \mathrm{~V}$ with margins)
\rightarrow Failure to do so: output ripple, loss of regulation, protection latch

Transient Time and Steady-State Operations

- A converter needs time to reach its steady-state regulated output
$>$ Depending on compensation, the op-amp rails up and takes time to recover
$>$ There can be a large overshoot which may need hundred of millisecond to damp

- Analysis should take place once the transient period is over: how long can it take?

Periodic Operating Point or POP

- SIMPLIS uses a unique algorithm to meet the steady-state point in a record time
- The POP determines with the highest precision when the circuit is stabilized:
\checkmark Average voltage across inductors is 0 V and average current in capacitors is 0 A

Place the pop trigger on the schematic

\square Divide By Two
Initial Condition of Output (used in Divide by $\mathrm{Two}^{\text {) }} 0$
Input Trigger Condition (Used in Divide by Two)
'0_TO_1'
Ok Cancel

- The POP trigger will synchronize the engine with the start of each periodic cycle
- A typical output can be a clock or a driver output for instance

Find Steady-State Operation in a few Seconds

- When launched, the process finds the operating point very rapidly
- Once at steady-state, small-signal analysis can be initiated

(A)

(A)

- The process is extremely precise with a convergence precision down to 1 pA and 1 pV

The Process of Finding the Right Point

Select maximum switching period and instruct the engine when it starts its POP process
$>$ The clock here is 100 kHz , then choose $15 \mu \mathrm{~s}$ and go for 5 switching cycles

You can select various analyses from this panel

Topology Changes

- SIMPLIS while performing POP calculation explores so-called topologies
- A topology represents a unique state which is solved and recorded
$>$ As simulation progresses, known topologies are retrieved and reused to proceed

PERIODIC OPERATING-POINT ANALYSIS

Writing pertinent data files ...
Leaving SIMPLIS.
Leaving sIMPLIs.

Agenda

-

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

Running Small-Signal Analysis

- As long as a POP analysis is successful, small-signal analysis can be obtained
\checkmark Obtain frequency response like control-to-output, or loop gain/phase in seconds
\checkmark Work with all switching converters and those without an averaged model (LLC)

- A pulse-width modulator (PWM) is added to the sketch for duty ratio modulation
- Set source V_{3} to 1 and SIMPLIS automatically controls its amplitude

The Steady-State Waveforms are First Obtained

- You can immediately verify that variables are within the expected range
\checkmark Measurements are available such as rms, average or peak values

Curve label	Name	Value
IC	RMS/cycle	1.6176011 A

(A)

(A)

(V)

(V)

Power Stage Response is the First Step

- The Bode plot for the power stage is obtained in a fraction of seconds
- Same for the PWM section which shows the effects of the propagation delay
\checkmark The 100-ns pure delay makes the converter a non-minimum phase system

freq/Hertz Control-to-output transfer function 100kHertz/div

$H_{0}=20 \log \left(\frac{V_{i n}}{V_{p}} \frac{R_{L}}{R_{L}+r_{L}}\right)$

Closed-Loop Simulations

- In the laboratory, it is difficult to physically open the loop especially in high-gain systems
- Perturbing the system while operating in closed-loop is the way to go
\checkmark The ac source is of fixed amplitude and does not need adjustment
\checkmark The same circuit can be used for ac or transient tests
ac or transientests

Current Mode and Subharmonic Oscillations

- If the current loop is not properly compensated, instability at $F_{s w} / 2$ can happen
- By reducing the gain of the inner current loop, oscillations can be tamed

Automatic Compensation is Possible

- It is possible to write macros automating components values calculations
$>$ Read the power stage magnitude and phase at the selected crossover frequency *
.VAR Vin=12
VAR Vout=5
.VAR L=100u
VAR Ri=160m
.VAR $T s=10 u^{*}$ please update clock and ramp generators * *
.VAR Gfc=-20 * magnitude at crossover *
.VAR PS $=-40$ * phase lag at crossover *
*
* Enter Design Goals Information Here *
.VAR fc=10k * targetted crossover *
.VAR PM=60 * choose phase margin at crossover *
.VAR $\operatorname{Sn}=\{(($ Vin-Vout $) / \mathrm{L}) * R i\}$
.VAR Sramp=\{1/Ts $\}$
.VAR $m c=1.5^{*}$ set this value for ramp comp *
.VAR $\mathrm{Se}=\left\{(\mathrm{mc}-1)^{*} \mathrm{Sn}\right\}$
.VAR $\mathrm{kr}=\{\mathrm{Se} / \mathrm{Sramp}\}$

```
* Enter the Values for Vout and Bridge Bias Current *
*
.VAR Ibias=1m
.VAR Vref1=2.5 {'*'}
.VAR Rlower={Vref1/Ibias}
.VAR Rupper={(Vout-Vref1)/Ibias}
*
* Do not edit the below lines *
.VAR boost=PM-PS-90
.VAR G=10^(-Gfc/20)
.VAR fp=(tan(boost*pi/180)+sqrt((tan(boost*pi/180))^2+1))*fc
.VAR fz=fc^2/fp
.VAR a=sqrt((fc^2/fp^2)+1)
.VAR b=sqrt((fz^2/fc^2)+1)
.VAR R2=((a/b)*G*Rupper*fp)/(fp-fz)
.VAR C1=1/(2*pi*R2*fz)
.VAR C2=C1/(C1*R2*2*pi*fp-1)
Pole-zero calculation
```

* Determine the amount of compensation

Meeting the Right Crossover in a few Seconds

- SIMPLIS calculates the compensation values based on the adopted strategy
- It is then easy to explore other approaches with different crossover, margins etc.

Simulator menu
Edit Netlist (before preprocess)
Edit Netlist (after preprocess)
Open/Close Command (F11) Window

* Rupper $=2500$
* Rlower = 2500
* R2 = 84484.6310392954
* $\mathrm{C} 2=5.34187416193801 \mathrm{e}-10$
* C1 $=2.24506484641772 \mathrm{e}-10$
* Boost = 10
* Fz = 8390.9963117728
* $\mathrm{Fp}=11917.5359259421$
* $\mathrm{Sn}=11200$
* $\mathrm{Se}=5600$
* kr $=0.056$

Compensated loop gain $T(f)$
20kHertz/div

SIMPLIS is a Time-Domain Simulator

- With a clock source, cheat SIMPLIS and obtain ac-response of non-switching circuits
- A typical application is an automated compensator

.VAR Gfc=-10 * magnitude at crossover *
.VAR PS=-150 * phase lag at crossover *
* Enter Design Goals Information Here *
.VAR fc=1k * targeted crossover *
.VAR PM $=70$ * choose phase margin at crossover *
*
* Enter the Values for Vout and Bridge Bias Current *
.VAR Vout=12
.VAR Ibias $=2 \mathrm{~m}$
VAR Vref1=2.5
VAR Rlower=Vref1/Ibias
VAR Rupper=(Vout-Vref1)/Ibias
*
* Do not edit the below lines *

VAR boost=PM-PS-90
VAR Kf=($\left.\tan \left((\text { boost } / 4+45)^{*} \mathrm{pi} / 180\right)\right)^{\wedge} 2$
VAR fz1=fc/sqrt(Kf)
VAR fz2=fc/sqrt(Kf)
VAR fp1=fc*sqrt(Kf)
VAR fp2=fc*sqrt(Kf)
VAR G=10^(-Gfc/20)
VAR $a=\operatorname{sqrt}\left(\left(f c^{\wedge} 2 / f p 1^{\wedge} 2\right)+1\right)$
VAR $b=s q r t\left(\left(f c^{\wedge} 2 / f p 2^{\wedge} 2\right)+1\right)$
VAR $c=s q r t\left(\left(f z 1^{\wedge} 2 / f c^{\wedge} 2\right)+1\right)$
VAR $d=\operatorname{sqrt}\left(\left(f c^{\wedge} 2 / f z 2^{\wedge} 2\right)+1\right)$
VAR R2=((a*b/(c*d))/(fp1-fz1))*Rupper*G*fp1
VAR C1=1/(2*pi*fz1*R2)
VAR C2=C1/(C1*R2*2*pi*fp1-1)
VAR C3=(fp2-fz2)/(2*pi*Rupper*fp2*fz2)
VAR R3=Rupper*fz2/(fp2-fz2)
VAR $\mathrm{GO}=\left(\left(\mathrm{R} 2^{*} \mathrm{C} 1\right) /\left(\right.\right.$ Rupper*(C1+C2)))* $\mathrm{c}^{*} \mathrm{~d} /(\mathrm{a}$ *b) * Gain at fc sanity check *

Confirming Bias Point and Frequency Response

- The simulation confirms the applied voltage for regulation is 12 V
- Frequency response shows the wanted $10-\mathrm{dB}$ gain at 1 kHz

freq/Hertz

Explore Complicated Converters

- Any converter can be simulated to determine the control-to-output transfer function
- Start with a simple circuit for which the POP is easily obtained
\checkmark Then add more comprehensive models to see $2^{\text {nd }}$ - and $3^{\text {rd }}$-order effects

Obtain the Transfer Function Instantly

- Any converter can be simulated to determine the control-to-output transfer function
- Start with a simple circuit for which the POP is easily obtained
\checkmark Then add more comprehensive models to see $2^{\text {nd }}$ - and $3^{\text {rd }}$-order effects

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

Power Factor Correction

- Power factor correction simulation places a heavy burden on computers
- High-frequency events spread across several tens of mains cycles imply simulation power
- SPICE users simulate only a small portion of the operations

Averaged Model Alternative

- Averaged models are an alternative for transient and ac analyses
- The switching component has disappeared and they simulates fast
$>$ Convergence issues are likely to appear depending on model robustness

Averaged model of the single-stage QR flyback converter

Cycle-by-Cycle Simulations with SIMPLIS

- SIMPLIS lets you examine the frequency response using a fixed dc bias
- This dc level equals the rms value of the input voltage, e.g. 230 V dc for a $230-\mathrm{V}_{\mathrm{ac}}$ input
- You can test the operating point and obtain the small-signal response in a few seconds

\checkmark Works for operating point determination
\checkmark Can give the small-signal response of the control-to-output transfer function
\checkmark Simulates in 1 s !

Operating Point and Ac Response

- The operating point lets you check that the converter regulates properly
- The POP process works fine with the dc input but would fail with a sinewave input
$>$ Use multi-tone ac analysis instead

Transient Simulations

- With a sinusoidal input you can run simulations in the long range
\checkmark Check input current distortion and transient response in different conditions

Dynamic Performance

- The transient response can be quickly assessed at low- and high-line input voltages
- The available granularity allows you to zoom-in and precisely look at switching events

Explore Distortion and Harmonic Limits

- SIMPLIS lets you interpolate data and choose different apodization windows
- You can also easily evaluate the input current distortion

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

Impedance Association

- A converter fed by an EMI filter will see its transfer functions affected:
\checkmark The control-to-output transfer function can have degraded margins
\checkmark The output impedance of the converter can be significantly changed
$>$ Always confirm stability is not at stake when the filter is installed

A Negative Resistance

- The incremental or small-signal resistance of a closed-loop converter is negative
- When associated with an EMI filter, a mechanism for oscillations exists
$>$ Considering a 100\%-efficient converter, we have: $P_{\text {out }}=P_{\text {in }} \longrightarrow I_{\text {in }} V_{\text {in }}=I_{\text {out }} V_{\text {out }}$
- In closed-loop operations, $P_{\text {out }}$ is constant, no link to $V_{\text {in }}$
$\longrightarrow I_{\text {in }}\left(V_{\text {in }}\right)=\frac{P_{\text {out }}}{V_{\text {in }}}$

The incremental input resistance is negative

$$
R_{i n}=-\frac{V_{i n}^{2}}{P_{o u t}}
$$

A Simple Example

- Losses in the EMI filter are illustrated by a damping ratio ζ or a quality factor Q
- If losses are exactly compensated by a negative resistance, you built an oscillator $H(s)=H_{0} \frac{1+s / \omega_{z}}{\frac{s^{2}}{\omega_{0}{ }^{2}}+\frac{s}{\omega_{0} Q}+1} \quad Q=\frac{1}{2 \zeta} \rightarrow \begin{aligned} & \text { If ohmic losses are gone, the } \\ & \text { damping ratio is zero, } Q \text { is infinite. }\end{aligned}$

Conditions for Stability

- The front-end filter and the downstream converter can be modeled with a minor loop
- This loop reflects the action of an impedance divider

- In this particular arrangement, the Nyquist criterion applies for stability assessment

$$
V_{\text {in }}(s)=V_{t h}(s) \frac{1}{1+\frac{Z_{t h}(s)}{Z_{i n}(s)}} \quad\left\{\begin{array}{l}
\frac{Z_{t h}(s)}{Z_{i n}(s)}=-1 \\
\left|\frac{Z_{t h}(s)}{Z_{\text {in }}(s)}\right|=1 \text { and } \angle \frac{Z_{t h}(s)}{Z_{\text {in }}(s)}=-180^{\circ}
\end{array} \quad \begin{array}{l}
\text { Conditions for } \\
\text { oscillations }
\end{array}\right.
$$

Simulating an Output Impedance

- Once the EMI filter has been determined, you must plot its output impedance
\checkmark Check the presence of peaks in the transfer function
\checkmark Calculate the necessary damping in case of too high a peaking

Simulate the Closed-Loop Input Impedance

- You must now check the input impedance of the converter once stabilized
- Identify the overlap areas and check if sufficient margins exist
$>$ If margins are too thin or if overlaps exist, filter damping is mandatory

Check Input Voltage in Load Step

- Once the filter is installed, check the transient response to see the effects
- With current-mode control, oscillations may be observed on the input rail

Optimally Damping the Filter

- It is possible to show that an optimal $R C$ damper exists to reduce the peaking
- Determine the values of R and C to meet a maximum peak of $20 \mathrm{~dB} \Omega$ or 10Ω
$>$ Based on R.D. Middlebrook method, $R=6 \Omega$ and $C=5.45 \mu \mathrm{~F}$

Optimal damping calculations

$$
\begin{aligned}
& \mathrm{Z}_{0 \mathrm{~mm}}:=10 \Omega \text { targe } \\
& \frac{\mathrm{Z}_{0 \mathrm{~mm}}}{\mathrm{R}_{0}}=\sqrt{\frac{2 \cdot(2+\mathrm{n})}{\mathrm{n}^{2}}}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{opt}}:=\sqrt{\frac{(4+3 \cdot n)(2+\mathrm{n})}{2 \cdot n^{2} \cdot(4+n)}}=1.305$

$$
\mathrm{R}_{0}:=\sqrt{\frac{\mathrm{L}_{1}}{\mathrm{C}_{3}}}=4.613 \Omega
$$

$$
\mathrm{n}:=\frac{\mathrm{R}_{0} \cdot\left(\mathrm{R}_{0}+\sqrt{\mathrm{R}_{0}^{2}+4 \cdot \mathrm{Z}_{0 \mathrm{~mm}}^{2}}\right)}{\mathrm{Z}_{0 \mathrm{~mm}}^{2}}=1.16
$$

$\mathrm{C}_{\text {damp }}:=\mathrm{C}_{3} \cdot \mathrm{n}=5.45 \cdot \mu \mathrm{~F}$

$$
\mathrm{R}_{\text {damp }}:=\mathrm{R}_{0} \cdot \mathrm{Q}_{\mathrm{opt}}=6.02 \Omega
$$

\checkmark Rather than determining R alone and making C 10x the EMI cap., determine the optimal $R C$ couple to meet the wanted peak

Damper is Installed and Oscillations are Tamed

- The $R C$ network is installed across the original capacitor
$>$ Watch for power dissipation as R_{12} will dissipate ac power

The damper is installed across the original EMI capacitor

Cascading Converters

- When power stages are associated, check interaction between converters
- The criterion involving the output and input impedance applies

Open-loop gain frequency response

A Stable Response

- You must individually plot output and input impedances of the boost and buck stages
- Then check the stability of the downstream converter in different operating conditions

(dB)

addition of the damped filter

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

Transfer Function Sensitivity

- The loop gain of a converter involves a power stage and a compensator
$>$ The power stage response is affected by parasitics and the modulator stage
$>$ The compensator response depends on components tolerances including the op-amp
How will crossover, phase and gain margins be preserved along the production cycle?

$$
\begin{aligned}
& \text { CM buck power stage Type } 2 \text { filter } \\
& T(s) \approx H_{0} \frac{1+\frac{s}{\omega_{z_{1}}}}{1+\frac{s}{\omega_{p_{1}}}} \frac{1}{1+\frac{s}{\omega_{n} Q}+\left(\frac{s}{\omega_{n}}\right)^{2}} G_{0} \frac{1+\frac{\omega_{z}}{s}}{1+\frac{s}{\omega_{p}}} \\
& H_{0}=\frac{R}{R_{i}} \frac{1}{1+\frac{R T_{s w}}{L_{2}}\left[m_{c}(1-D)-0.5\right]} \\
& \omega_{z_{1}}=\frac{1}{r_{C} C_{3}} \quad m_{c}=1+\frac{S_{e}}{S_{n}} \begin{array}{c}
\text { Artificical } \\
\text { ramp } \\
\text { Ilductor on- } \\
\text { slope }
\end{array} \\
& \omega_{p_{1}}=\frac{1}{R C_{3}}+\frac{T_{s w}}{L_{2} C_{3}}\left[m_{c}(1-D)-0.5\right] \quad \omega_{n}=\frac{\pi}{T_{s w}} \quad Q=\frac{1}{\pi\left[m_{c}(1-D)-0.5\right]} \\
& \text { Sensitivity } \\
& \text { analysis to } \\
& \text { all elements! }
\end{aligned}
$$

Statistical Parameters Variations

- A Monte Carlo analysis is a multivariate modeling technique
- Assign tolerances to components, see how combinations affect a variable
$>$ Check dispersion on crossover frequency, phase and gain margins

- Chose distribution type like gaussian (normal), uniform or corner (WCA)

Monte Carlo Steps

- You need to place specific probes instructing what parameters to record
- We want to check margins versus components variations

Running the Simulations

- Simulations can be run through the Monte Carlo menu using several computing cores

Histogram Representation

- SIMPLIS will build the histogram representation of the parameters we've selected
- In this example, all the margins are safe and crossover variations remain narrow

Agenda

- SPICE and Power Converters
- The SIMPLIS Approach
- Transfer Functions
- Power Factor Correction
- Interactions with EMI Filter
- Monte Carlo Analysis
- Design Example of a Flyback Converter

Designing a Flyback Converter

- We are going to design a universal-mains 60-W flyback converter delivering $12 \mathrm{~V} / 5 \mathrm{~A}$
- The study is divided in three parts: front-end, converter and control loop

The Front-End Rectifying Section

- The mains is rectified with a diode bridge and converted to a dc voltage
- A bulk capacitor plays the role of an energy reservoir when the input sine decreases
$>$ The utmost important parameter is the worst-case rms current

Choose $100 \mu \mathrm{~F}$

$$
\begin{aligned}
I_{, r m s}=I_{\text {avg }} \sqrt{\frac{2}{3 F_{\text {line }} t_{d}}-1}=1.2 \mathrm{~A} \mathrm{rms} \\
V_{\text {in }}=85 \mathrm{~V} \mathrm{rms}
\end{aligned}
$$

60 V

- Chose the component based on its rms capability at the worst-case temperature

Implement a Constant-Power Load

- The load is the downstream converter which keeps a constant output power
- This is important to increase the absorbed current as the rectified voltage drops

- A PWL resistance mimics the constant-power load with values calculated by Excel

Determining the Valley Voltage

- The converter shall deliver its nominal current down the rectified valley voltage
- It can imply an oversize of the converter if the ripple is too large - OPP issue
$>$ Increasing the bulk capacitance is a possibility to increase the minimum voltage

Check Hold-Up Time

- If the mains disappears, the bulk capacitor must maintain the dc rail for some time
- The converter shall continue operation for 10 ms in the worst case
$>$ You may need to increase the capacitance to meet this goal

\checkmark The $180-\mu \mathrm{F}$ capacitor brings 14 ms of hold-up time
\checkmark Rms current is 1.1 A and 88 V is the valley at 85 Vac

Determine Primary Inductance Value

- The primary-side inductance sets the operating mode at nominal load current
\checkmark Too small an inductance yields to a high peak current and large conduction losses
\checkmark Too high the inductance will lead to slow converter with a low-frequency RHPZ

Determine Secondary-Side Ripple

- It is important to assess the secondary-side rms current
$>$ Determine power dissipated in the diode $\quad>$ Determine rms current in the capacitor

Maximum ESR value:

Capacitor rms current:

Capacitor dissipation:

$$
\mathrm{R}_{\mathrm{ESR}}:=\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{I}_{\text {secpeak }}}=0.014 \Omega \quad \text { ESR at } 100 \mathrm{kHz}
$$

$$
\mathrm{I}_{\mathrm{Crms}}:={\sqrt{\mathrm{I}_{\mathrm{secrms}}}{ }^{2}-\mathrm{I}_{\mathrm{out}}^{2}}^{2}=6.098 \mathrm{~A}
$$

$$
\mathrm{P}_{\mathrm{C}}:=\mathrm{I}_{\mathrm{Crms}}{ }^{2} \cdot \mathrm{R}_{\mathrm{ESR}}=0.534 \mathrm{~W}
$$

Secondary rms current sizes the wire gauge

Simulating the Basic Converter

- The current-mode structure compensation can be automated
$>$ Verify the operating point is correct at the lowest input voltage (88 V)

Looking at the Compensation Strategy

- A current-mode converter can be stabilized with a type 2 compensator
- It can boost the phase up to 90° with a zero and a pole adequately placed
$>$ Start with the frequency response at the lowest dc input voltage

Automate calculations

Enter text
${ }^{*}$ Enter values extracted from the plant Bode plot
${ }_{\Sigma}^{*}$
 *Enter Design Goals Information Here *
VAR $\mathrm{fc}=2 \mathrm{k}$ * targetted crossover *
.VAR PM $=60$ * choose phase margin at crossover *
*Enter the Values for Vout and Bridge Bias Current *
VAR Ibias $=250 \mathrm{u}$
VAR Vref $=2.5$ VAR Rupper = (Nout-Vref)/Ibias
*Optocoupler specifications *
. GLOBALVAR Rpullup $=20 \mathrm{k}$ * check with the selected control chip * GLOBALVAR Fopto $=6 \mathrm{k}$
GLOBALVAR Copto $=1 /\left(2^{*}\right.$ pi*Fopto ${ }^{*}$ Rpullup) $)$ GLOBALVAR Copto $=1 /(2$
GLOBALVAR CTR $=0.33$
. GLOBALVAR CTR $=0.33$
. VAR $\mathrm{V}=0.2$
VAR VCEsat $=0.3$
VAR VCEEst= 0.3
VAR Vdd
VAR Vdd $=5$
VAR Vf $=1$
VAR $A=$ Vout-Vf f V
VAR $B=V d d-V C=$ sat
.VAR $B=$ Vdd-VCEsat
VAR $R \max =(A / B)^{*}$ Rpullup $=C$ TR
*Do not edit the below lines "
VAR boost=PMPS-90
VAR $f \mathrm{p}=\left(\tan (\right.$ boost $\mathrm{p} \mathrm{i} / 180)+$ sqrt $\left(\left(\tan \left(\text { boost } t^{*} \mathrm{p} / 180\right)\right) \wedge^{2+1))}\right)^{*} \mathrm{fc}$
VAR $f=f=f \wedge 2 / f \mathrm{f}$
VAR $G=10 \wedge(-G f / 20)$

VAR C $1 a=1$ (2^{*} pi ${ }^{*} f_{2}{ }^{* R u p p e r)}$
VAR $C 2^{a}=1 /\left(2^{\circ}\right)^{\circ}$ ifp ${ }^{2}$ Rpullup)

The Compensation Path Includes the Optocoupler

- The type 2 compensator can be built around a TL431 and an optocoupler
- The optocoupler exhibits a current transfer ratio and a low-frequency pole
$>$ Always thoroughly characterize the optocoupler including its ac response

Assess Compensated Open-Loop Gain

- Once the stabilization strategy is selected, check crossover and phase margin
\checkmark Verify margins in low- and high-line operating conditions

[^0]

Curve label	Name
Loop Gai...	Gain Crossover Frequency
2.9225618 kHz	
Loop Gai...	Gain Margin

Transient Response at Low- and High-Line Inputs

- Once the converter is stabilized and shows good margins, run transient tests
- Check undershoots are acceptable for the downstream load

Look at the Big Picture

- It is now interesting to look at the same converter but powered from the mains
- See the effect of input ripple on variables

Looking at the Start-Up Sequence

- The start-up sequence takes a simulation time of 30 s for a 100-ms run

Check the Contribution of the Combined Currents

- The bulk rms current is made of low- and high-frequency ripple
(A)

Ready-Made Templates

- My last book on transfer functions covers numerous switching topologies
- 120+ examples are now available in a free ZIP files you can download
\checkmark Most of these circuits run on the demonstration version of SIMPLIS! http://powersimtof.com/Downloads/Book/Christophe Basso SIMPLIS Collection.pdf

Conclusion

- Simulating your power supply is an important part of the design flow
- SPICE simulation is an option but simulation time and lack of switching ac analysis is a problem
- SIMPLIS with its PWL engine delivers results in a flashing time
\checkmark An averaged model is no longer necessary and ac response is available from switching circuits
\checkmark It is a particularly-interesting feature for resonant converters for which modeling is difficult
- SIMPLIS allows you to test digital compensators and check coefficient values before coding
- Quick simulation is also a tremendous advantage for power correction circuits

[^0]: Curve label Name Value
 Loop Gain Gain Crossover Frequency 1.8814254 kHz
 Loop Gain Gain Margin $\quad 18.964765 \mathrm{~dB}$
 Loop Phase Phase Margin 56.852504degrees

