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Abstract:  The wireless power transfer link between two coils is determined by the 

properties of the coils and their mutual interaction. A theoretical model, based on classical 

electrodynamics, is developed to describe the interaction between coaxial cylindrical coils 

at low frequencies. Therefore, vector potentials and symmetry arguments are used to solve 

Maxwell’s equations in the quasi-static limit. Expressions for the mutual inductance, coil-

resistance due to skin effects and proximity effects are derived. 
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Physical quantities � .......... Magnetic permeability � .......... Conductivity � ........... Electric permittivity 

E .......... Electric field 

B .......... Magnetic field 

A .......... Vector potential 

J ............ Current density 

I ............ Current 

r ........... Filament radius 

h........... Filament separation � .......... Skin depth � .......... Angular frequency 

 

 

 

t ........... Time 

L .......... Self-inductance 

M ......... Mutual inductance 

V .......... Potential difference 

R .......... Resistance 

k .......... Coupling factor 

l ........... Conductor length 

d .......... Conductor diameter � .......... Surface charge density 

K ......... Surface current density 

 

Bold letters are vectors 

 

 

Mathematical quantities � .......... Unit vector 

i ............ Complex number ��	
 ... Dirac delta function 

dl ......... Infinitesimal line element �� ......... First kind Bessel function 

of first order  .......... Nabla operator ∧ .......... Vector cross product �� ........ Laplace operator � ....... Vector Laplace operator �� ....... Real numbers �0,∞
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1   Introduction 

Recent treatments of wireless power transfer between coils [refA] have shown that 

understanding the mutual interaction is a major task when optimizing the link efficiency. 

Here, we give a theoretical approach on the topic of mutual interaction and resistive losses 

due to skin- and proximity effects. The derivation of the theoretical model is split into three 

parts. First, the mutual interaction between two infinitesimal thin coaxial circular filaments 

is established. In the second step, these infinitesimal thin filaments are extended to 

filaments of finite thickness. The main idea by this part is to regard skin- and proximity 

effects. Finally, the behavior of coaxial circular coils, having multiple turns and layers, is 

derived from the first to parts by the principle of superposition. 

Some general assumptions, valid for the entire article, have to be mentioned. All media used 

for the theoretical models are assumed to be homogeneous, isotropic and linear. Moreover, 

any field or current that varies in time changes slowly enough, such that the quasi static 

limit is valid and the electric permittivity �, magnetic permeability � and electric 

conductivity  � are constant in every medium. 

2   Two coaxial circular filaments 

2.1   Mutual inductance 

We start with two coaxial circular filaments in free space, see Figure 1. Each filament is 

represented by a harmonically varying current density distribution. 

��,� � ��,����
 ��� � ��,�
��,� ��� !" 

 
Figure 1: Two coaxial circular filaments in free space 

The vector potential as a function of radius and height in a cylindrical coordinate frame, 

resulting from �� and �� (derivation given in the appendix) is   

#��, �
 � �2 % &'(
) *�������'��
�+,|.| / �������'��
�+,|.+0|1���'�
��. (1) 

Apparently, the first term inside the integral of equation (1) corresponds to a vector 

potential induced by �� and the second term to a potential induced by ��. For filament one, 

the first term of (1) is denoted as the self-induced potential and the second term as the 

mutual-induced potential. Hence, there are two expressions for the self- and mutual-vector 

potential: 

#3��, �
 � �2 % &'(
) �������'��
���'�
�+,|.|�� (2) 

#4��, �
 � �2 % &'(
) �������'��
���'�
�+,|.+0|�� (3) 
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According to [refB], the self-induction 5� and mutual induction 6��for loop one are given by 

5� � 1�� 8 #9 . &:;<=
, (4) 

6�� � 1�� 8 #>. &:;<=
, (5) 

where ?@� denotes filament one and &: � &A �� an infinitesimal tangential vector line 

element. Thus, we can get integral solutions for the self-inductance 

5� � B���� % &'	����'��
(
) , (6) 

and for the mutual-inductance 

6�� � B����� % &'	���'��
���'��
�+,0(
) . (7) 

Similarly, expression for 5� and 6�� are: 

5� � B���� % &'	����'��
(
)  (8) 

6�� � 6�� ≡ 6 (9) 

Note that the self-inductances 5�and 5� cannot be computed because the integral 

expressions diverge. This is due to the infinitesimal thickness of the filaments. 

2.2   Coupling factor 

The coupling factor between two coils is defined by: 

E � 6
F5�5�

 (10) 

Using the relations for self- and mutual-inductance, one can find that 0 G E G 1. 

Furthermore, the self-inductances 5� and 5� do not depend on the coil separation H, 

whereas the mutual inductance does. For a small gap H, approximate �+,0 I 1 � 'H and 

E I B�����F5�5�
% &'	���'��
���'��
�1 � 'H
 � J � JKH(
) , (11) 

where J and J’ are constants, independent on H. Equation (16) shows, that the coupling 

factor falls off linearly in case of small separation. Experimental measurements agree with 

this, e.g. see [refA] or [refC]. 

 

3   Filaments of finite thickness 

3.1   Regarding eddy currents 

Many examples like [refA] show that the coil resistance increases significantly with 

frequency. This is due to the fact, that harmonically time-varying electromagnetic fields 

near a conductor induce so called eddy currents. These eddy currents are frequency 

dependent and affect the current distribution within the conductor. If the electromagnetic 

field is produced by a current distribution inside the conductor, the phenomenon is called 
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skin effect. But if the electromagnetic field outside the conductor is produced by other coils 

or current distribution, the change of the effective resistance is called proximity effect. In 

order to find a model for the AC resistance, it is necessary to regard these eddy currents. 

Therefore, the diffusion of the vector potential near a conducting surface has to be 

investigated. For a first order approximation, consider a local vector potential field 	#) � M)�N parallel to a conducting surface. For the mathematical calculations, use a 

Cartesian reference frame where the surface conductor is set to the 	O plane, see Figure 2. 

 
Figure 2: Boundary between free space and a conductor 

The setup is basically the same as given in [refB], but for vector potentials. From the 

boundary conditions, the parallel component of #P is conserved and the dependence of the 

vector potential inside the conductor gets # � M��
�N.The fact that A(z) is independent on 

the x-y coordinate and only has a component in x direction, the diffusion equation for the 

vector potential reduces to # � Q���# � 0. Hence,  &�
&�� M��
 � Q���M��
 � 0 (12) 

A solution to differential equation (12) is 

M��
 � J� R. / J′�+ R. (13) 

Where E � �1 / Q
T!UV
� . By definition, the skin depth � is � � T �

!UV. The physically relevant 

solution of (13) can be written as 

M��
 � M)�+./X� ./X  (14) 

Note that the coefficient J’ was determined by the boundary condition at � � 0. From the 

definition of Y and by Ohm’s law, the current density � inside the conductor is 

���
 � �Q��M)�+./X� ./X  (15) 

Equation (15) states that the current density falls off exponentially from the surface of the 

conductor. 

3.2   Resistance for a cylindrical conductor 

Consider a cylindrical conductor in free space with a vector potential #P outside (see Figure 

4). At high frequencies, � ≪ & holds. To handle the exponential decay, ���
 is approximated 

by a formal current density �[��
: 

�[��
 ≡ \��M), 0 ] � ] �0,																											� ^ � (16) 

This means, that the current flows only through a shell of thickness � at the boundary of the 

conductor. It can be shown, that both current densities ���
and �[��
 carry the same amount 

of current for a cylindrical conductor of diameter &, when & ≫ �. The total current � 
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through the conductor is given by the integral of the current density over the conductor 

cross-section, namely: 

� � % �	&` � 2B % �&�	���
a/�
)  �[ � % �[	&` � 2B % �&�	�[��
a/�

)  (17) 

The result of the integration is: 

� � B��M)� b� / c�Q � 1
 &2 � �d �+a/�X� a/�Xe 

� I 	B��M)��, for & ≫ � 

�[ � B��M)�� (18) 

Both current densities carry the same current. For simplicity, �[ is used for further 

calculations. Thus, a first order approximation assumes that the current inside a conductor 

flows through a shell of radius � at the boundary of the conductor. This fact also changes 

the resistance of the conductor since the effective cross-section is reduced. Consider a 

circular conductor with cross-section diameter d. A potential difference f over a length A 
produces an electric field g. This potential difference can be expressed by the resistance h 

and a current	� through the conductor. This gives g � i
j � k	l

j . By the electric field, a current 

density � � �g is induced. The total current through the shell �[ (see equation (25)) is equal 

to m �	&`, i.e. 

�[ � % �	&` � � h	�A ` (19) 

Here, ` is the cross-section area for a shell of thickness �. For cylindrical conductors with 

diameter &: 

` � B na
�o� � B na

� � �o� � B&� � �� I B&�         for & ≫ �. (20) 

Skin effect:  The vector potential outside can be described by the self-inductance, namely 

M) � �5A . (21) 

Hence, the resistance for the skin effect is 

hpR q I 2���& 5 (22) 

Proximity effects:  According to (7), M) can be described by the mutual inductance and the 

current �� through the external loop. 

M) � ��6A  (23) 

The resistance for proximity effects is then 

hrstN I 2���& ���� 6. (24) 

Finally, the total resistance of the current loops for finite thickness is 

h � hpR q / hrstN I 2���& u5 / ���� 6v. (25) 
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4   Cylindrical coils 

4.1   Principle of linear superposition 

Since Maxwell's equations are linear, the diffusion equation for the vector potential derived 

in the appendix is also linear. Hence, the principle of superposition can be used for more 

than two circular filaments in free space. 

4.2   Mutual inductance 

Assume w coaxial circular filaments in free space, where filament Q has a radius � , is placed 

at height H  and carries a current � . The vector potential resulting from filament Q is: 

# ��, �
 � �2 % &'(
) � � ���'� 
���'�
�+,|.+0x|�� (26) 

Analog to section 2.1, the mutual inductance between two coaxial circular filaments Q and y 

is 

6 z � 1� 8 # . &:;<{
� B�� �z % &'(

) ���'� 
���'�z
�+,|0x+0{| (27) 

The filaments can be bundled into a primary and a secondary side, denoted with indicies 1 

and 2. The number of windings on the primary side is w�, and w� � w � w� on the 

secondary side, see Figure 4. Moreover, the current through the primary coil is called ��, 

and �� for the secondary coil. 

 

 
Figure 3: Configuration of the primary and secondary coil 

The correct formula for the mutual inductance between the primary and secondary coil is 

6 � } } 6 z
~

 �~=��

~=

z��
 (28) 

For coils with many turns and layers, calculating equation (28) is quite elaborate. According 

to [refD], the first order approximation of the mutual induction, 6 is 

6 I 	B��̅��̅�w�w� % &'(
) ���'�̅�
���'�̅�
�+,|0�=+0��|, (29) 

where �̅�, �̅�, H��	and	H�� are the mean radii and heights of the coils, see equation (30), (31) 

and Figure 5. 

�̅� � 1w� }� 
~=

 ��
 �̅� � 1w� } � 

~

 �~=��
    (30) 
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H�� � 1w� }H 
~=

 ��
 H�� � 1w� } H 

~

 �~=��
 (31) 

 

 
Figure 4: Cross section of the coils. Filaments for the first order approximation 

5   Conclusion 

In the previous sections, general expressions of mutual interaction and skin- & proximity 

losses for coaxial cylindrical coils were derived. Starting with simple coaxial circular 

filaments, the basic idea of mutual inductance and coupling factor was established. The 

extension to circular filaments with a finite cross section introduced skin- and proximity 

losses. With the principle of superposition, the mutual inductance for coaxial cylindrical 

coils was calculated. The main results of the theoretical model are summarized in Table 1.  

   

The coupling factor k falls of linearly with the distance d for close coil separation.  

6 I 	B��̅��̅�w�w� % &'(
) ���'�̅�
���'�̅�
�+,|0�=+0��|  

h I 2���& u5 / ���� 6v  

Table 1: Main results of the theoretical model for the mutual interaction between two coaxial cylindrical coils 

Experimental treatments like [refA] show a good accuracy of these theoretical results. 

Furthermore, the coupling and skin & proximity losses are measured with the vector 

network analyzer Bode 100 in “Measuring the Mutual Interaction between Coaxial 

Cylindrical Coils with the Bode 100”, available on www.omicron-lab.com. 

References 

[refA] S. Sandler: Optimize Wireless Power Transfer Link Efficiency – Part 1, Power 

Electronics Technology, October 2010, p.43-46 

 

[refB]  J.D. Jackson: Classical Electrodynamics, 3rd edition, Wiley (1999), p.218-219 

 



 

     
 

 

Smart Measurement Solutions 

Omicron Lab - Article 

A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils 

Page 9 of 15 

[refC] L.Heinzle: Measuring the Mutual Interaction between two Coaxial Cylindrical 

Coils with the Bode 100, [Online] 2012-06-29, www.omicron-lab.com 

 

[refD] F. W. Grover: Inductance Calculations: Working Formulas and Tables, Dover 

Publications (1946), p.88-90 

 

[refE] J.M. Zaman, Stuart A. Long and C. Gerald Gardner: The Impedance of a Single-

Turn Coil Near a Conducting Half Space, Journal of Nondestructive Evaluation, 

Vol. I, No. 3, 1980 

  



 

     
 

 

Smart Measurement Solutions 

Omicron Lab - Article 

A Theoretical Model for Mutual Interaction between Coaxial Cylindrical Coils 

Page 10 of 15 

Appendix A: Derivation of the vector potential 

The diffusion equation 

In homogeneous isotropic media with negligible free charges, Maxwell’s equations (SI units, 

see [refB]) in the quasi-static limit are: � ∧ � � �� (A.1) 

� ∧ Y � �∂�∂t  (A.2) 

�	. � � 0 (A.3) �	. Y � 0 (A.4) 

Here B is the magnetic field, Y the electric field, � the current density, µ the magnetic 

permeability and � the electric permittivity. For conducting media, another useful relation 

is Ohm's law, where � is the conductivity: 

� � �Y (A.5) 

For non-conducting media, we will set � � 0. Equations (A.1) to (A.5) fully describe the 

behavior of classical electromagnetic systems. Of course, appropriate boundary conditions 

are necessary to solve such partial differential equations. At an interface between two 

media, the boundary conditions are 

�	. ���Y� � ��Y�
 � � (A.6) 

 
Figure A1: Boundary between two media 

� ∧ �Y� � Y�
 � 0 (A.7) 

�	. ��� � ��
 � 0 (A.8) 

� ∧ ����� � ����
 � � (A.9) 

Note that � is a unit normal to the surface (Fig. A1), � a surface charge density and � a 

current on the surface plane. So far we have five differential equations and four boundary 

conditions which fully describe our system. Vector potentials will be a useful concept. A 

magnetic field � can be described by the curl of a vector potential #, namely � �  ∧ � with 

the choice of gauge freedom 	. � � P (Coulomb gauge). Hence we can write Faraday's law 

(A.2) as 

 ∧ u� / ∂#∂t v � P (A.10) 

In general, the electric field is given by the vector potential # and a scalar potential �: 

Y � �?#?� � � (A.11) 

For our calculation, we will neglect the scalar potential, i.e.� � 0 for negligible free charges. 

Furthermore, we split the current density into two components, namely � � ��t�qa / ��s��, 

where ��s��, is a controllable current density in conductors and ��t�qa corresponds to a 

current density induced in a by Ampere's law. Rearranging Ampere's law (A.1) yields to � ∧ � � ���t�qa / ���s�� � ��Y / ���s�� (A.12) 

and inserting the electric field gives 
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� ∧ � � ��� ?#?� / ���s�� (A.13) 

With the vector identity � ∧ �� ∧ #
 � ���.#
 � ��# and Coulomb gauge �.# � 0, we can 

write the diffusion equation as 

��# � 	�� ?#?� � ����s�� (A.14) 

This differential equation will be the origin for further calculations. Note that ��# is the 

vector Laplace operator of #. 

General symmetry arguments 

For the further proceeding, mathematics is kept as simple as possible. Therefore, 

introducing a symmetry argument is an essential step. For circular coils, a model that obeys 

rotational symmetry is a valid approximation. It is advisable to describe the system in 

cylindrical coordinates, where the rotational invariant axis is set to be the horizontal 

component. Any position � in space can be described with a set of parameters � � � � � ∈�� � �0,2B
 � � as: 

� � c� cos�� sin�� d (A.15) 

The unit vectors are: 

�� � c	cos�sin�� d �� � c� sin�cos�0 d �. � c001d (A.16) 

In subsequent chapters, we will only consider circular currents, i.e. ���, �
 ≡ ���, �
�� in 

conducting media. The direction of the vector potential # is determined by the current 

density �. Ultimately, #��, �
 � M��, �
��, where M is a scalar function. Furthermore, it is 

assumed that the electromagnetic fields and thus the vector potential will vary 

harmonically in time with a low angular frequency � namely #��, �
 � M��
��� !". Finally, 

symmetry arguments and time dependence reduce the diffusion equation (A.14) for 

conducting media ��M � Q���M � ����s��, (A.17) 

and non-conducting media 

��M � 0. (A.18) 

Boundary conditions 

By the use of symmetry arguments, it is also possible to simplify the boundary conditions 

(A.6) to (A.9). Therefore it is necessary to write the gradient operator in cylindrical 

coordinates: 

 � �� ??� / �� 1� ??	 / �. ??� (A.19) 

From equation (A.11) and � �  ∧ � it follows, that the components of the electromagnetic 

fields are 
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Y � �Q�M�� � � �. ?M?	 � �� ?M?	  (A.20) 

Since rotational symmetry along the �-axis is assumed, the unit normal to any surface, 

namely �, can be written by a superposition of � � ��� / ��. , where �, � ∈ � with the 

condition �� / �� � 1. Furthermore, our model will only have vertical or horizontal 

boundaries such that either � � 1, � � 0 or � � 0, � � 1. The case of � � 1, � � 0, is used 

for vertical boundary surfaces, e.g. for a cylindrical surface at radius �. Accordingly, the first 

boundary condition is always satisfied since �	. Y � 0 everywhere. The second boundary 

condition gives 

lim�↑s M � lim�↓s M (A.21) 

Similarly, the third and fourth boundary conditions can be written as 

lim�↑s
?M?� � lim�↓s

?M?�  (A.22) 

1�� lim�↑s
?M?� � 1�� lim�↓s

?M?� � ¤ (A.23) 

where ¤ is a scalar current density in the azimuthal direction. ¤ is set to ¤ ≡ |��s��|. Now 

consider the conditions for a horizontal boundary at height H where � � 0, � � 1. 

lim.↑0 M � lim.↓0 M (A.24) 

lim.↑0
?M?� � lim.↓0

?M?� (A.25) 

� 1�� lim.↑0
?M?� / 1�� lim.↓0

?M?� � ¤ (A.26) 

There are four more conditions that our electromagnetic fields should satisfy. They arise 

from the fact that we want to consider a physical system with a finite electromagnetic fields 

and dimensions. First, the vector potential has to be zero infinitely far away from the origin. 

Second, there should be no singularities in the vector potential within the region of interest. 

Consequently, both conditions can be specified in a mathematical way: lim�→( M � 0 lim.→¦( M � 0 (A.27) 

∀h ∈ �� ∶ 	 |lim�→k M| ] @, for a constant @ ∈ �� (A.28) 

∀© ∈ �			 ∶ 	 |lim.→ª M| ] «, for a constant « ∈ �� (A.29) 

The vector Laplace operator applied to the azimuthal component of the vector potential # 

gives 

�# � ?�M?�� / 1� ?M?� / ?�M?�� � M��, (A.30) 

where we have already neglected the �-derivative. Thus the diffusion equation in a 

rotational invariant configuration for a harmonic vector field writes: ?�M?�� / 1� ?M?� / ?�M?�� � M�� � Q���M � ����s�� (A.31) 
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A general solution for the vector potential 

In order to solve the diffusion equation (A.31) in a general way, we suggest using the 

technique of separating variables [refE]. A solution for the free space diffusion equation 

(A.18) is obtained below. For any separation variable ' ∈ �, the diffusion equation can be 

written as ?�M?�� � '�M (A.32) 

?�M?�� / 1� ?M?� � M�� � �'�M (A.33) 

Using an approach of M � ¬��
��
, gives ?�?�� � '� � 0 (A.34) 

?�M?�� / 1� ?M?� / �'� � 1��
M � 0 (A.35) 

For equation (A.34) the solution is a linear combination of exponential functions, namely 

��
 � M®�'
�,|.| / °̄�'
�+,|.|, (A.36) 

and for equation (A.35), a combination of Bessel- and Neumann-functions is appropriate 

¬��
 � @®�'
���'�
 / «±�'
w��'�
 (A.37) 

Note that M®�'
,	 °̄ �'
, @®�'
 and «±�'
 are coefficients dependent on m, �� is the first kind 

Bessel-function of first order and w� the first kind Neumann-function of first order. These 

coefficients are determined by the boundary conditions. The total solution for the vector 

potential can be written as 

M � % &'	*M®�'
�,|.| / °̄�'
�+,|.|1*@®�'
���'�
 / «±�'
w��'�
1(
)  (A.38) 

Appendix B: Vector potentials of coaxial circular filaments 

One circular filament 

Place a simple circular filament with radius � in free space. The filament should carry a 

sinusoidal current, described by the current density ��s��. 

��s�� � ����
 ��� � �
� �� (A.39) 

Split the region of interest into two parts Ι and ΙΙ, such that the circular filament lies on the 

boundary plane. The general integral solution for physical systems with a limited # is 

M³ � % &' °̄³�+,.���'�
(
)  (A.40) 

M³³ � % &' °̄³³�,.���'�
(
)  (A.41) 

The coefficients @®�'
 from the first order Bessel function are collectively absorbed in °̄³ 
and °̄³³. Applying the first boundary condition at � � 0 for the vector potential gives 
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% &' °̄³�+,.���'�
(
) � % &' °̄³³�,.���'�
(

)  (A.42) 

Now multiply both sides by the integral operator m �&����'′�
()  and use the Fourier-Bessel 

identitym �&����'K�
() ���'�
 � X�,´+,

, . This yields to 

°̄³ � °̄³³. (A.43) 

The relation between the loop current, that forces a change in the magnetic field, and thus 

the change in the vector potential has to be considered. The magnetic permeability is the 

same in all regions, i.e. �� � �� � �. 

�?M³?� µ.�) / ?M³³?� µ.�) � ����� � �
 (A.44) 

°̄³ / °̄³³ � ������'�
 (A.45) 

M � �2 % &'�����'�
���'�
(
)  (A.46) 

Two coaxial circular filaments 

Let us now consider two coaxial circular with radii �� and ��, separated by a height H, in free 

space (see Figure 1). Both carry a sinusoidal current, represented by a current density ��s��� and ��s���. 

��s��� � �����
 ��� � ��
�� �� (A.47) 

��s��� � ����� � H
 ��� � ��
�� �� (A.48) 

According to Figure 1, we can split or model into three regions of interest. 

M³ � % &' °̄³�+,.���'�
(
)   for � ¶ H (A.49) 

M³³ � % &'*M®³³�,. / °̄³³�+,.1���'�
(
)  0 ] � ] H (A.50) 

M³³³ � % &' °̄³³³�,.���'�
(
)  � ¶ H (A.51) 

In this constellation, there are two horizontal boundaries. Applying the first boundary 

condition for the vector potential and applying the Fourier-Bessel identity gives °̄³�+,0 � M®³³�,0 / °̄³³�+,0. (A.52) 

Similarly, the second horizontal boundary at � � 0 leads to °̄³³³ � M®³³ / °̄³³. (A.53) 

Regarding boundary condition (A.26) with �� � �� � �· � � gives  

 

�?M³³³?� µ.�) / ?M³³?� µ.�) � ������ � ��
, (A.54) 

and  
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�?M³³?� µ.�0 / ?M³?� µ.�0 � ������ � ��
, (A.55) 

which leads to 

�M®³³ / °̄³³ / °̄³³³ � ��������'��
, (A.56) 

and °̄³�+,0 / M®³³�,0 � °̄³³�+,0 � ��������'��
. (A.57) 

Algebraic manipulations of (A.56) and (A.57) yield to 

2M®³³�,0 � ��������'��
, (A.58) 

and 

2 °̄³³ � ��������'��
. (A.59) 

The total vector potential for any point ��, �
 is thus given by 

#��, �
 � �2 % &'(
) *�������'��
�+,|.| / �������'��
�+,|.+0|1���'�
��. (A.60) 

Although we don’t give an explicit prove that the integral expressions for A are convergent, 

one can see that (A.60) is a superposition of two single filaments, each with a vector 

potential equivalent to (A.46). 

 


