10th Power Analysis & Design Symposium

March 10th, 2021 - Worldwide (Virtual)

The Search for the Best DC-Bias Components

by Melanie Klenner (K&K Prime Engineering) & Joanne Wu (Würth Elektronik)

The search for the best DC-Bias components

Agenda

- Introduction
- Low Current
- High Current
- DC-Block
- Measurement to Simulation
- Final Summary

Introduction

Use-Case – Narrowband

Applications combining RF & DC

> GPS

- Satellite communication
 - Low Noise Block (LNB)

Wireless LAN (WiFi)

© Garmin

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Introduction

Use-Case – Narrowband

Applications combining RF & DC

Camera system in vehicles

© Komando.com

Introduction

Use-Case – Broadband

Gain amplifier:

- Broadband amplifiers needed for signal generators
- Bias network within RF circuit design is crucial for overall performance
- Limited or only narrowband literature

Question:

How to achieve good RF throughput for broadband applications?

Recommended Component Values

Component	Frequency (MHz)				
	50	900	1900	2200	2400
L1	270 nH	56 nH	18 nH	18 nH	15 nH
C1, C2	0.01 µF	100 pF	100 pF	100 pF	100 pF

© Analog Devices, HMC311ST89

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Introduction Summary

General Information

- > Wrong DC-biasing:
 - RF signal loss
 - > RF signal within power line
- Limited literature about broadband DC-Biasing

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

- Combining RF+DC
- Standard Approach
- Unconventional Approach
- Selecting the best fit

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Low Current Combining RF+DC

> RF Trace:

- Check line impedance
- Avoid solder mask & Use via fence

Components:

- Minimize stray parasitics
- Good GND for SMA connectors

> S-Parameters:

- ➢ S11: Reflection at RF-In
- S21: Throughput from RF-In to RF-Out

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Standard approach – Wire wound ceramic

WE-KI: >

➤ 744761156A - 56nH

- Pros & Cons:
 - + Broadband
 - \geq 400 MHz to 6 GHz
 - \succ Resonate with filter capacitors
 - Self resonation with high Q
 - \triangleright Not for low frequency <400 MHz

Unconventional approach – Ferrite beads

WE-CBF HF:

742863160 - 600Ω

Pros & Cons:

- + Very broadband
 - \geq 30 MHz to 7 GHz
- + Low frequencies \triangleright
- \succ Low current rating
- Bead saturation \succ

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Unconventional approach – Ferrite beads 0.1A

Conclusion:

- Ferrite saturation
 - ≻ ↓Impedance
- Use two ferrite beads in series
 - Doubles impedance
- Choose the right component
 - High impedance
 - Saturation current

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Selecting the best fit

- Used chip beads:
 - ➢ CBF HF − 742863160
 - ➤ CBF 742792656
 - ➤ TMSB 74269262601

Results:

- All broadband & good for LF
- ➢ Freq. restriction due to:
 - Parasitic capacitances
 - Resonances

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Low Current Choosing the right component

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Low Current Summary

Components

Coil – WE-KI

ResonancesNot for low freq.

Ferrite – WE-CBF HF

No resonancesBroadband

Conclusion

- Compare different inductors and ferrites
- Measurement data with DC-Bias available
- Ferrites improve broadband RF throughput

High Current

- Concept
- Simulation example
- Components

High Current Concept – Bias Tee (1)

> Theory:

- DC-Block & RF-Block
- Characteristic RF-Block:
 - > DC: Low R = R_{DC}
 - ➢ RF: High Z

Broadband:

Cascade RF-Block

High Current Concept – Bias Tee (2)

 $> L_3 > L_2 > L_1$

- \succ Low R₃ \rightarrow low Z_{DCin}
- \succ R₃ << R₂ \leq R₁
- \succ accordingly to Z_{ind}

- \succ L₁ \rightarrow ind. & L₂ \rightarrow cap.
- \succ C₁ \rightarrow short
- > R₁ damps Q_{1 11 2}

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

High Current

Simulation – 3rd order Bias-Tee

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

High Current Components

Inductors:

- Unshielded & Semishielded for high current
 - \succ Constant L \rightarrow No saturation over current
 - → Very low R_{DC} → small voltage drop
 - ➢ E.g: PD2, PD4, HCF or SD
- Be aware of coupling

> Capacitors:

- Stable over voltage
- ➢ MLCC: e.g. NP0
- Electrolytic: not for bipolar applications

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

High Current Summary

Theory – RF-Block

- For DC: lowest possible R_{DC}
- For RF: high impedance
- > Broadband: cascading

> Values:

 $C_3 > C_2 > C_1$ $> L_3 > L_2 > L_1$ $> R_3 << R_2 ≤ R_1$

Components

Inductor

Semi & Unshielded
Low R_{DC}
Coupling!

MLCCs – NP0
Electrolytics
Polarisation!

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

DC-Block

- Concept
- Standard
- Extreme Range

DC Block Concept

> Capacitor:

- ➢ Blocks DC to RF Source
- Determines voltage & frequency range

ESD-Protection:

- Needed if separate input or output
- E.g. bidrectional

DC Block Standard

> MLCCs:

- \blacktriangleright Broadband needed \rightarrow used above SRF
- Use highest value of biggest possible size
 - ➢ Low ESR
 - ➢ Low ESL

DC Block

Extreme Range

High voltage:

- Safety & High Voltage Types MLCCs like CSMH or CSSA
- > Bigger in size \rightarrow Line impedance!

Extreme broadband:

- Combine two different capacitors
 - ➢ E.g. MLCCs and electrolytic
 - Be aware of resonances

Use special capacitor types

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

DC Block Summary

Overview

Blocks DC to RF Source

Low ESR

Low ESL

MLCCs Use highest value of biggest possible size

Extreme Range

High Voltage

> High Voltage MLCCs

Extreme broadbandTwo Capacitors

Measurement to simulation

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Measurement to simulation

Include measurement data e.g. touchstone (s1p,s2p...) \succ

- Simulate load & source impedance change
- Behaviour with other modules

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

Final Summary

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components

10.03.2021 | Joanne Wu & Melanie Klenner | Omicron Lab Symposium | The search for the best DC-bias components