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Opportunities for Impedance Measurements in DC-Microgrids
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Opportunities for Impedance Measurements in DC-Microgrids
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Opportunities for Impedance Measurements in DC-Microgrids

Impedances in DC-Microgrids - from Offline to Online Measurements6

𝑍1(𝑠) 𝑍2(𝑠) Why online measurements?

 Real grids are complex

 Converters are nonlinear

 Adjustable parameters:

 Control

 Mode of operation

 Controller

 Digital filter

 Droop-curve

 Slope

 Shape

 Offset

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍3(𝑠) 𝑍4(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍5(𝑠) 𝑍6(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

stable?
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Droop-Controlled DC-Microgrids

Impedances in DC-Microgrids - from Offline to Online Measurements8
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Droop-Controlled DC-Microgrids

 Voltage Control:

 Voltage sources need fine tuning

 Load sharing is nearly impossible with a 12-bit ADC

Impedances in DC-Microgrids - from Offline to Online Measurements9
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Droop-Controlled DC-Microgrids

 Master-Slave Control:

 Less communication is required

 Master must be a bidirectional source

 Master must not be turned off

Impedances in DC-Microgrids - from Offline to Online Measurements10
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Droop-Controlled DC-Microgrids

 Transition to droop-control:

 No communication is required

 A defined additional resistance helps with load sharing

 Use a virtual droop-resistance

Impedances in DC-Microgrids - from Offline to Online Measurements11
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Droop-Controlled DC-Microgrids

 Load sharing can be accomplished by droop-curves

 The droop-curve is defined by a small signal 𝑅𝐷𝑟𝑜𝑜𝑝

 For each linear interval 𝐼𝑂 can be expressed as:

 𝐼𝑂 =
𝑈𝐺𝑟𝑖𝑑−෩𝑈𝑂

𝑅𝐷𝑟𝑜𝑜𝑝
+ ሚ𝐼𝑂

 Example (blue curve from 360 V to 400 V)

 𝐼𝑂 =
𝑈𝐺𝑟𝑖𝑑−380 𝑉

1 Ω

Impedances in DC-Microgrids - from Offline to Online Measurements12

෩𝑼𝟎

𝐼𝑂
𝑹𝑫𝒓𝒐𝒐𝒑

𝑈𝐺𝑟𝑖𝑑

𝐼 𝑂
(𝐴
)

𝑈𝐺𝑟𝑖𝑑 (𝑉)

𝑈𝐺𝑟𝑖𝑑 (𝑉)

𝑅
𝐷
𝑟
𝑜
𝑜
𝑝
(Ω
)

𝑑𝐼

𝑑𝑈
=

−1

𝑅𝐷𝑟𝑜𝑜𝑝

෨𝑰𝟎



© Fraunhofer 

Droop-Controlled DC-Microgrids

 Load sharing can be accomplished by droop-curves

 The droop-curve is defined by a small signal RDroop

 Droop-curves can also be nonlinear

 Constant-power-loads have a negative RDroop

 Example (blue curve at 380 V):

 𝐼𝑂 =
𝑃𝑂

𝑈𝐺𝑟𝑖𝑑
=

5 𝑘𝑊

380 𝑉

 𝑅𝐷𝑟𝑜𝑜𝑝 =
𝑈𝐺𝑟𝑖𝑑
2

𝑃𝑂
=

380 𝑉 2

5 𝑘𝑊
= 28.88 Ω
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Droop-Controlled DC-Microgrids

Impedances in DC-Microgrids - from Offline to Online Measurements14

Small-signal modeling:

 Converter is current controlled

 Converters impedance 𝑍𝐶𝑜𝑛𝑣 can be separated from 𝐶𝑂

𝑖𝑂

𝑢𝐺𝑟𝑖𝑑𝒁𝑪𝒐𝒏𝒗 𝑪𝑶

𝑖𝐿
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Droop-Controlled DC-Microgrids
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_
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+
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+
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1

𝐿

Simplified block diagram of a droop controlled converter:

 Measurement filter

 Droop-resistance

 PI-controller

 Buck-converter
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Droop-Controlled DC-Microgrids
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Small-signal modeling:

 Converter is current controlled

 Converters impedance can be separated from 𝐶𝑂

 In many cases the current control acts like a low pass of 1st order

 Converter can be modeled as R-L-C

𝑖𝑂

𝑢𝐺𝑟𝑖𝑑𝒁𝑪𝒐𝒏𝒗 𝑪𝑶

𝑖𝐿 𝐼𝑂

𝑈𝐺𝑟𝑖𝑑𝑪𝑶

𝑹𝑫𝒓𝒐𝒐𝒑 𝑳𝑻𝑷

≈
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Droop-Controlled DC-Microgrids
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Small-signal modeling:

 Converter can be modeled as R-L-C

 𝐿 is part of the low pass 𝐿𝐿𝑃 =
𝑅𝐷𝑟𝑜𝑜𝑝

2𝜋∙𝑓𝑐
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Stability Investigation through Impedance Measurements

Stability Criteria

 Passivity Criterion

 Minor Loop Gain Criterion

 Middlebrook Criterion

 Gain-Margin-Phase-Margin

 Opposing Argument Criterion

 ESAC Criterion

 RESC Criterion

 …

Impedances in DC-Microgrids - from Offline to Online Measurements19

𝑍1(𝑠) 𝑍2(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍3(𝑠) 𝑍4(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍5(𝑠) 𝑍6(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠) 𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

Stable?
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Stability Investigation through Impedance Measurements

 Passivity Criterion

 A passive system must have no RHP-poles

 The phase 𝜑 of a passive system must be −90° ≤ 𝜑 ≤ 90°

 Can be used for design of a converter or the whole system

Impedances in DC-Microgrids - from Offline to Online Measurements20
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Stability Investigation through Impedance Measurements

 Minor Loop Gain Criterion

 Take an initially stable grid

 Add a new load converter

 Measure 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑍𝑙𝑜𝑎𝑑

 We apply a MLGC

 Repeat for every new load

Impedances in DC-Microgrids - from Offline to Online Measurements21

𝑍1(𝑠) 𝑍2(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍𝑠𝑜𝑢𝑟𝑐𝑒 𝑍𝑙𝑜𝑎𝑑

𝑍3(𝑠)

𝑍5(𝑠)

𝑍4(𝑠)

𝑍6(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)

𝑍𝑐𝑎𝑏𝑙𝑒(𝑠)
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 Gain-Margin-Phase-Margin 

 To form the whole grid 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑍𝑙𝑜𝑎𝑑 are paralleled

 𝑍𝐺𝑟𝑖𝑑 =
𝑍𝑠𝑜𝑢𝑟𝑐𝑒∙𝑍𝑙𝑜𝑎𝑑

𝑍𝑠𝑜𝑢𝑟𝑐𝑒+𝑍𝑙𝑜𝑎𝑑
=

𝑍𝑠𝑜𝑢𝑟𝑐𝑒

1+
𝑍𝑠𝑜𝑢𝑟𝑐𝑒
𝑍𝑙𝑜𝑎𝑑

 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 is stable

 1 +
𝑍𝑠𝑜𝑢𝑟𝑐𝑒

𝑍𝑙𝑜𝑎𝑑
must not destabelize

Impedances in DC-Microgrids - from Offline to Online Measurements2222

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑧

𝑅𝑒

𝐼𝑚

PM

GM

Unit circle

𝑍𝑠𝑜𝑢𝑟𝑐𝑒/ 𝑍𝑙𝑜𝑎𝑑
Margin

Stability Investigation through Impedance Measurements
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Stability Investigation through Impedance Measurements

 Gain-Margin-Phase-Margin (GM-PM)

 Compare both 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑍𝑙𝑜𝑎𝑑

 For each frequency one of two conditions must apply

 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 ∙ 𝐺𝑀 ≤ 𝑍𝑙𝑜𝑎𝑑

 arg 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 − 180° − 𝑃𝑀 ≤ arg 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 ≤ arg 𝑍𝑠𝑜𝑢𝑟𝑐𝑒 + 180° − 𝑃𝑀

Impedances in DC-Microgrids - from Offline to Online Measurements2323
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Bode100 Testbench

 Bode 100

 Generation of the test signal (max 13dBm)

 Gain-Phase measurement

 Wide Band Amplifier

 Amplification by 13 dB

 0.2 Ω ouput resistance

 Coupling Transformers 

 Isolated coupling

 Isolated measurement

 Maximum DC-current:

 25 A for 10 Hz-Transformer 

 50 A for 100 Hz-Transformer

Impedances in DC-Microgrids - from Offline to Online Measurements25

V

𝑍𝐷𝑈𝑇(𝑠) 𝑍𝐺𝑟𝑖𝑑(𝑠)

A A

V

~
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Bode 100 Testbench

 Passive converter:

 𝐶𝑂 ≈ 260 𝜇𝐹

 𝐸𝑆𝑅 ≈ 20 𝑚Ω

Impedances in DC-Microgrids - from Offline to Online Measurements26

𝑀
𝑎
𝑔
𝑛
𝑖𝑡
𝑢
𝑑
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Ω
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐻𝑧

𝑃
ℎ
𝑎
𝑠𝑒

(°
)

𝐶𝑜

𝐸𝑆𝑅

𝐿𝑝𝑎𝑟
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Bode 100 Testbench

 Droop-controlled converter

 Converter can be modeled as R-L-C

 Increase in 𝑅𝐷𝑟𝑜𝑜𝑝 leads to:

 Higher 𝑍 at low frequencies

 Lower 𝑍 at „resonance frequency“
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Bode 100 Testbench

 Constant-power load (CPL)

 Typically high 𝑅𝐷𝑟𝑜𝑜𝑝

 Violates passivity at low frequencies
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Bode 100 Testbench

 Constant-current source (CCS)

 Acts like a passive converter (𝑅𝐷𝑟𝑜𝑜𝑝 = ∞)

 Can not stabilize a constant power load
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Bode 100 Testbench

 Constant-voltage source (CVS)

 No droop-resistance

 “Resonance“ at lower frequencies
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Agenda
 Introduction to the DC-Mircrogrid

 Opportunities for Impedance Measurements in DC-Microgrids

 Droop-Controlled DC-Microgrids

 Stability Investigation through Impedance Measurements

 Bode 100 Testbench

 Output-impedance of a constant-current source

 Output-impedance of a constant-voltage source

 Output-impedance of a droop-controlled converter

 Input-impedance of a constant-power load

 Online Measurement with Pseudo-Random-Binary-Sequences

 Advanced Data Analytics for Grid Layout and Stability Optimization

 Stabilization of DC Networks Applying Artificial Intelligence

 Summary
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Online measurement with Pseudo-Random-Binary-Sequences
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 Pseudo-Random-Binary-Sequences (PRBS)

 Length 𝐿

 Bit-Duration 𝜏𝐵

 White noise Approximation

 𝑓𝑚𝑖𝑛 =
1

𝜏𝐵∙𝐿
= Δ𝑓

 𝑓𝑚𝑎𝑥 ≈
1

3 𝜏𝐵
…

1

2 𝜏𝐵

𝑡 𝜇𝑠

𝑖
𝐴

1 1 0 1 0 1 1 1 1 0 0 0 11 0 1 1 1 00

A

V

𝑍1(𝑠) 𝑍2(𝑠)

A A

1 1 0 1 0 1 1 1 1 0 0 0 1
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Online measurement with Pseudo-Random-Binary-Sequences
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 Pseudo-Random-Binary-Sequences (PRBS)

 Length 𝐿

 Bit-Duration 𝜏𝐵

 White noise Approximation 

 𝑓𝑚𝑖𝑛 =
1

𝜏𝐵∙𝐿
= Δ𝑓

 𝑓𝑚𝑎𝑥 ≈
1

3 𝜏𝐵
…

1

2 𝜏𝐵
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Advanced Data Analytics for Grid Layout and Stability Optimization
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Stabilization of DC Networks Applying Artificial Intelligence

Impedances in DC-Microgrids - from Offline to Online Measurements35

 Modeling the relationship 
between network parameters and 
stability using random forests

 Determination of the relevance of 
the input parameters of network

 Base model for optimization

 Automated calculation of the 
small signal DC network 
impedance for many input 
parameter settings

 Stability assessment according to 
the minor loop gain criterion 

 Refinement of the circuit model 
based on PRBS-measurements 

 New optimization method using 
classification decision trees as 
surrogate model and ensemble 
methods (random forests)

 Adjustment of network 
parameters for stability 
optimization or the design of 
new networks

 Implementation of PRBS 
measurement 

 Adjustments for power coupling

 Testing and improvement of 
procedures

 Integration into an IISB test bench

Surrogate Model DC 
Network

Stability 
Optimization

Implementation
Digital Network 

Twin

SPICE Model Random Forest Model New Optimization Algorithm for 
Classification Models

Test Bench
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Summary

 DC-Microgrids

 Power electronics dominated

 Droop-controlled

 Decentral load sharing

 Droop-Control

 Current controlled converter

 Droop curves can be linear or nonlinear

 Constant-power converters have negative 
droop resistances

 Stability

 Passivity-Cirterion

 MLGC-Criterion
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 Bode 100 Testbench

 Bode 100

 Wide band amplifier

 Coupling transformer

 PRBS

 Injection of bit streams

 Multiple frequencies in one measurement

 Data-Analytics & AI

 Digital Twin

 Stability optimization

 Intelligent DC-Microgrid


