

9

BIRICHA DIGITAL

All the Turns Ratios that We Can Have!

- As mentioned earlier, the 6 coils can be connected in many different ways to get the same turns ratio
 - And of course the pin numbers may vary depending on the transformer that you use \rightarrow always consult device datasheet
- However, there are only a few options that are applicable/useable for a low voltage/low power DC-DC Flyback
- We have 6 coils, for our DC-DC Flybacks, we can have a total of 9 combinations :
 - 5:1, 4:1, 3:1, 3:2 (1.5:1),
 - 2:1 \rightarrow 2 useful winding arrangements/versions (more in this later)
 - 1:1 \rightarrow 3 useful winding arrangements/versions (more on this later)
- Of course, if we turn our transformer around we will also have:
 - 1:5, 1:4, 1:3, 2:3, 1:2
 - Often needed for step up applications

Value

34

1.91

4.18

30

65.6

0.18

500

Unit

μH

A

A

mΩ

μVs

μН

V (AC)

16

BIRICHA DIGITAL **Electrical Properties:** How Do We Calculate our Primary and Secondary Inductances? Properties Inductance Base 1) LBASE · From previous slides we know that our total inductance for either **Turns Ratio** 101010101 Rated Current Base 2) primary or secondary is given by $L = k \times (n)^2$ R BASE Saturation Current Base 3 SAT BASE R_{DC BASE} DC Resistance Base 4) • We also know that the inductance for 1 coil is given in the Voltage-µSecond Base ⁵⁾ ∫Udt _{Base} datasheet as \therefore LBASE = $\mathbf{k} \times (\mathbf{n})^2$ L_{S Base} Leakage Inductance Base Insulation Test Voltage VT In our case = 3.4uH • If we connect 2 coils in series we double the number of turns and our inductance becomes $L = k \times (2n)^2$ or $L = k \times (n)^2 \times 2^2$ - Or LBASE x $2^2 \rightarrow$ in our case 3.4uH x 4 = 13.6uH • If we connect 3 in series we triple $n \rightarrow (3n)^2$ - Or LBASE x $3^2 \rightarrow$ in our case 3.4uH x 9 = 30.6uH Rule 5: Total inductance is given by: Lpri = LBASE x (Number of primary coils connected in series)² Lsec = LBASE x (Number of secondary coils connected in series)² * L is the inductance of a l long solenoid, N is the number of turns, µo is the permeability free space A is the and l is the length

BIRICHA DIGITAL Properties Value Unit Inductance Base 1) LBASE 3.4 μH How Do We Calculate Our Primary Saturation Current? Turns Ratio 1:1:1:1:1 The datasheet specifies our Saturation Base Current ISAT BASE Rated Current Base²⁾ 1.91 A R BASE Saturation Current Base 3) 4.18 ISAT BASE - In this cause it is 4.18A PEAK not RMS!) DC Resistance b mΩ Unlike "Rated Current" which is a thermal parameter, "Saturation Current" is determined by the maximum flux that our core can handle Voltage-µSecond Base ⁵⁾ ∫Udt _{Base} 65.6 μVs Leakage Inductance Base 0.18 μН L_S Base Insulation Test Voltage VT 500 V (AC) Saturation current is determined by our PEAK current and not RMS Yes it is be bit confusing \rightarrow let us elaborate If we saturate our core, it stops acting like an inductor and things will go very with an example in the next slide wrong! It's a little bit like a washing up sponge that is completely saturated with water \rightarrow it stops acting like a sponge and water will go everywhere! Remember from school physics that our flux is proportional to our Ampturns* If our core saturates with 100A and only 1 turn, we can also saturate with 1A and 100 turns We can consider** ISAT_BASE as the current that will saturate our core when we have the maximum number of turns, i.e. when all 6 coils are connected in series But if we only use 3 coils in series and nothing else, then we have halved our number of turns, therefore we can have twice as much current before saturation * Flux ϕ (in Webers) = Magneto-motive Force (MMF in A.turns) / Reluctance (A/Weber) 18 ** this is for ease of explanation only, in practice it is measured a different way, please consult the datasheet

BIRICHA DIGITAL	
 How Do We Calculate Our Primary Saturation Current? First, please remember that in a Flyback transformer* when the current in the primary winding is flowing, there is no current flowing in the secondary "winding" There is no net contribution to the Amp-Turns from the secondary and therefore, we only need to consider the primary currents and coils for saturation purposes From previous slides we know that paralleled coils on the same core do not increase our number of turns → it is just like using thicker wire We ignore all parallel coils and only consider series coils in our primary If we use all 6 coils (in series on the primary), we can have our maximum number of turns and therefore minimum saturation current. Primary Saturation Current, ISAT_PRI = ISAT_BASE If we have 5 coils in series on the primary the we have only used 5/6th of our maximum number of turns, therefore we can increase our ISAT_PRI by 6/5 and so on Primary Saturation Current ISAT_PRI = 5/6 x ISAT_BASE = 1.2 x ISAT_BASE 	Rule 6: For Flyback transformers ISAT_Pri = 6 x ISAT_BASE / Primary coils in series But please use the spreadsheet! @
 e.g. if ISAT_BASE in datasheet = 4.18A, then ISAT_PRI = 1.2 x 4.18A = 5.0A And so on * Ideal conditions, ignoring any cross conduction and turn on/off times 	19

22

BIRICHA DIGITAL

Design Examples and Calculations with WDS and Flex Transformer Spreadsheet Biricha WDS Automatic Power Supply Design Software that allows you to design and stabilise power supply control loops down lot component level You can download WDS and our Detailed control loop design is covered in our Analog Power Supply Design Flex Transformer spreadsheet for Workshop, for now we will just use WDS free from It calculates all necessary voltages, currents and stresses on power devices www.biricha.com/omicron & So you can select your power components www.biricha.com/flex It calculates the size of our output capacitor based on our ripple and step response requirements Finally it provides us with IR_Pri, IR_Sec, ISAT_Pri, Turns Ratio, Transformer Primary and Secondary Inductances (Lpri and Lsec respectively) - In other words ALL the parameters that we need to select our off the shelf transformer We can then use our Flex Transformer spreadsheet to see if we can find a suitable of-the-shelf component (or calculate by hand using the techniques shown in this presentation)

If you can't find one then you have to get a custom transformer

LAUIT	hie T-	- Isolat	eu riy	Dack 4	•0 V III •	- 900	WIA O	ut	- IR_Pri >= 0.329A
Order Code	Datashee	t Lpri (µH)	IR Pri (A)	Primary IS/ (A)	AT IR Sec (A)	Lsec (µH)	VT (V (AC))	Size	 Lpri >= 268.642uH IR Sec >= 1.404A
749196248	SPEC	105.60	0.80	2.40	1.60	6.60	1500	ER14.5/6	– ISAT_Pri >= 0.329A
749196238	SPEC	132.80	0.80	1.95	1.60	8.30	1500	ER14.5/6	Step 4: Use WDS calculated data to
749196228	SPEC	185.60	0.80	1.41	1.60	11 W	e have foun	d our part	quickly find a suitable transformer
749196218	SPEC	345.60	0.80	0.72	1.60	21			If you do not find a suitable
749196 <mark>1</mark> 41	SPEC	136.00	0.55	1.44	1.10	8.: 8.:	is comp	er selection lete!	transformer, try 3:1 or 5:1 or change what ever else you can change
Click on	SPEC	174.40	0.55	1.10	1.10	10.90	500	ERTI/5	init ever else you can change
SPEC for	SPEC	235.20	0.55	0.81	1.10	14.70	500	ER11/5	
datasheet	SPEC	438.40	0.55	0.33	1.10	27.40	500	ER11/5	
749196 <mark>14</mark> 8	SPEC	136.00	0.50	1.53	1.00	8.50	1500	ER11/5	
749196 <mark>13</mark> 8	SPEC	174.40	0.50	1.20	1.00	10.90	1500	ER11/5	
749196 <mark>1</mark> 28	SPEC	235.20	0.50	0.83	1.00	14.70	1500	ER11/5	
749196 <mark>1</mark> 18	SPEC	438.40	0.50	0.44	1.00	27.40	1500	ER11/5	
		235.20 438.40	0.50 0.50	0.83					

\checkmark	Electrical Properties	:				
Calculations by Hand – For Completeness Only!	Properties	Test conditions		Value	Unit	Tol.
calculations by hand if of completeness only:	Inductance Base	100 kHz/ 100 mV	LBASE	21.6	μH	±209
• Primary has 4 coils in series and only 1 current path	Turns Ratio		n	1:1:1:1:1:1		
– Lpri = LBASE x 4 ² = 21.6uH x 4 ² = 345.6uH	Voltage-µSecond Base		∫Udt _{Base}	63.4	µVs	max.
$= Lpm = LDA3L \times 4 = 21.0011 \times 4 = 545.0011$	Rated Current Base	ΔT = 40 K	IR BASE	0.8	A	typ.
– IR_Pri = IR_Base = 800mA	Saturation Current Base	IAL/LI < 10 %	ISAT BASE	0.48	A	typ.
	DC Resistance Base	@ 20 °C	R _{DC BASE}	200	mΩ	max.
– ISAT_Pri = 6/4 x ISAT_Base = 1.5 x 0.48A = 720mA	Leakage Inductance Base Insulation Test Voltage	100 kHz/ 1 V all windings	L _{S BASE}	0.17	μH V (AC)	typ.
 All 6 coils are connected No dangling coils! Dot convention is correct for our design 						
	4:1					

DIGITAL						
Completing the Design wi	th WDS					
 Output Caps selection and s 	stresses					
 Calculated based on Vout rip that we specified earlier in t 			d transien	it response	5	
Output Filter Capacitor						
C0 Capacitance	639.391	639.391	νμF			
C0 ESR	10.322	10.322	γmΩ			
C0 ESR Zero	24114.385		Hz			
Specified Overshoot	1800		mV			
Actual Overshoot	62.443		mV			
Specified Ripple (pk-pk)	18		mV			
Actual Ripple (pk-pk)	28.6		mV			
RMS Current	1.046		Α			
Ripple Current (pk-pk)	2.754		A			
Peak Voltage	9.025		V			
Power Dissipation	11.298		mW			
						30

34

DIGITAL

Coming Soon: New Online Workshop from Biricha

- We have also designed a DC/DC Flyback whose specification can be changed by the user
 - Will be available for sale from many major suppliers
 - Isolated Flyback Vin <=52V, Vout 3.3 to 50V, Pout ~=10W
 - Multiple footprints for many of the components
 - Includes robust silicon with high ratings as well as protection/snubbers/clamp
- WDS + Biricha Flex Transformer spreadsheet can calculate all components based on the users specification and then the correct transformer daughter card can be soldered directly on the board
- Detailed online material, multiple design examples, workbooks, videos, tools, WDS, spreadsheets etc. will guide the students in a step-by-step manner to designs their power supply and get their product out of the door in record time
 - Not a single component omitted ⁽ⁱⁱⁱ⁾
- The attendees can then design and test their power supply for their product with full confidence that at least there are no hardware bugs
- The online workshop will be available on teachable.com soon
 We start with Isolated Flyback; other popular topologies will follow

