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Hard-Switching Operations without Parasitics

 A switching circuit without parasitics operates safely within maximum ratings

 Overlap between current and voltage

is minimum and keeps switching losses low
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Parasitics degrade Switching Performance

 Parasitics add oscillatory phenomena and safe limits can be violated
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 Leakage inductance brings the vDS outside 
of the safe operating area

 Switching losses scale up with frequency



Voltage Excursion must be Clamped
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 Dampers and snubbers efficiently calm down oscillations

 The voltage excursion is back into the SOA

 Power dissipation is still there with dampers



Resonant Waveforms Smooth Switching Events

 Quasi-resonance operation brings near-zero-voltage transition
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Soft Switching Definitions – ZVS

 Zero-voltage switching or ZVS implies a switch turned on with 0 V across its terminals
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Soft Switching Definitions – ZCS

 Reverse recovery occurs when the diode is hard-blocked by a negative voltage
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 Zero-current switching or ZCS implies a turn-off mechanism initiated at zero current
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 The LLC converter is a member of the series-resonant converters family

 The magnetizing inductance Lm is part of the resonating elements (L)

 The transformer leakage inductance or an extra inductor forms the term Ls (L)

 A series capacitor Cs is inserted to form the complete resonant converter (C)

What is an LLC Converter?
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The Benefits of the LLC Converter

 The LLC converter offers soft-switching conditions in normal-load conditions

 Zero-voltage switching (ZVS) for the switches in the primary side

 Zero-current switching (ZCS) for the secondary-side diodes

 It can operate at high switching frequency to build compact converters

 Perfect for flat-panel displays like LCD TVs, game stations, servers power supplies

 Three energy-storing elements, 
Cr, Lr and the transformer 
magnetizing inductance Lmag

Components count is limited 
especially if integrated magnetics 
is adopted
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Different Configurations for the LLC - Primary

 The LLC converter can be operated in half- or full-bridge configuration
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 Power up to 600 W  Robust version with clamp diodes

Lower input ripple current

 Half rms current in a capacitor

 Power beyond 1 kW

 Diagonal conduction



Different Configurations for the LLC - Secondary

 A full-bridge rectifier requires diodes with a lower breakdown voltage

 Two separate windings

 BV > 2Vout

 Secondary leakage 
brings current imbalance

 Synchronous 
rectification

 One single winding

 BV > Vout

 No current imbalance
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 An LLC converter is typically operated from a 50% high-voltage square waveform

 The power flow is then adjusted by varying the switching frequency

 Soft-switching on MOSFETs and diodes depends on frequency with respect to fs

Voltage-Mode Control

o Capacitor stress
o OVP can be triggered
o Poor stabilization time
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 The LLC converter is a multi-resonance converter depending on operating conditions

 In heavy-load condition, Ls dominates the resonant tank as Lm is shunted by Rac

 In lighter-load operations, Lm and Ls together set the resonant frequency

The Resonance varies with the Output Power
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 The converter is modeled using the first harmonic approximation or FHA
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Output Voltage of an LLC Converter

 The equivalent network is fed by the square-wave fundamental value according to FHA

 Determine the output voltage with the transfer function of the 3rd-order network
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A Complex Input Impedance
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 The impedance offered by the network to the half-bridge shows two main zones:

 A capacitive region:

 An inductive region:
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 Plotting the dc transfer characteristic of the LLC network reveals several points

Where to Operate the Converter?

As load current decreases, Lm

enters the picture and brings a 
second peak

An impedance plot shows so-
called capacitive and inductive
regions

 The inductive region brings ZVS 
on power MOSFETs and ZCS on 
output diodes

 ZCS on MOSFETs is occurring in 
the capacitive region but the 
control law changes!
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Observing Waveforms tells us the Operating Region

 Resonating current ir is a perfect sinewave when LLC operates at resonant frequency
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Ensuring Zero-Voltage Switching

 The deadtime duration must be sufficiently long to discharge parasitics

 Select primary inductance so that magnetizing current ensures ZVS at the highest Fsw
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The Right DeadTime for ZVS Conditions

 Calibrate  deadtime to minimize body diode conduction time whilst ensuring ZVS
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SIMPLIS can simulate GaN Transistors

 Adding GaN transistors to the schematic capture is an easy process
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Simulation confirms ZVS with a Reduced Dead Time

 A smaller Coss for the GaN leads to a lower magnetizing current for improved efficiency

Low-side drive
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 We have seen that changing the switching frequency affects the output power

 If a regulation loop drives a voltage-controlled oscillator (VCO), output power is adjusted

 The frequency varies from a min value (high power) to a maximum high value (light load)

Controlling the LLC Converter

 A dead time is set to avoid shoot-through currents but also ensures ZVS operation

Sweeps between 0 to 5 V
and from 120 kHz to 350 kHz
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 There is no averaged model for the LLC because energy is transported by fundamental

 The control-to-output transfer function complicates proper compensation:

 The transfer function is a 3-pole system for Fsw  Fo – dominant LF pole, one pole pair

 The transfer function becomes a 2-pole system when Fsw  Fo

Transfer Function in Voltage-Mode Control
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 Kvf is a gain proportional to slope at the considered 
operating point on the voltage curve

 The quality factor Q and the double-pole beat 
frequency vary with operating conditions

 The low-frequency pole p is linked to the output 
capacitance and also moves with operating conditions

 The output capacitor and its ESR contribute the zero z

Compensating the LLC operated in voltage-mode is not a dinner party!

J. Jang et al., Dynamic Analysis and Control Design of Optocoupler-Isolated LLC Series Resonant Converters with Wide Input and Load Variations, 2009 IEEE Energy Conversion Congress and Exposition



 A program like SIMPLIS lends itself perfectly for assessing the ac response of the LLC

Simulating the LLC Converter
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 A very simple setup is sufficient to 
obtain the transfer function

 The operating point is 
automatically set depending on 
Vin and Pout

 Frequency is recorded to see 
where the LLC stands at a given 
operating point.
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 At a 350-V input voltage with two different loads, the shape changes considerably

Various Small-Signal Responses
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Control-to-Output Transfer Function – Variable Load



Control-to-Output Transfer Function – Variable Input



 Considering the deep phase lag, a type 3 compensator is needed

 The resonant peak occurs below 2 kHz implying a crossover at 4-5 kHz

A Type 3 for Compensation
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Always Check the Operating Point!

 The operating point will tell you if the converter regulates correctly

 It is important to check this point otherwise the ac analysis can be useless
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 The simulation reveals a good loop gain meeting the wanted crossover and phase margin

Good Compensation at a 350-V Input Voltage
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Simulating the Entire Converter

 The simulation reveals a good loop gain meeting the wanted crossover and phase margin

 All the compensation 
parameters are 
automatically calculated

 Easy to change strategy 
and see the effects

Full-bridge



 Changing operating conditions affect crossover and phase margin

Large Variations of Loop Gain

Low-line operations, Vin = 350 V dc High-line operations, Vin = 420 V dc
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 At low line, frequency variations are moderate, operations close to resonance

 At high line, frequency variations are large, operations above resonance

0 dB0 dB



Transient response at Vin = 340 V and Pout stepped from 240 W to 480 W with a 1-A/µs slope

Closed-Loop Operation with Analogue Compensation
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 The voltage across the resonant capacitor is the integral of the resonant tank current

Charge Control Operations

Z. Hu et al., Bang-Bang Charge Control for LLC Resonant Converters, IEEE Transactions on Power Electronics, 2015, Vol. 30, Issue 2

  743 mA
sw

QU T
i t 

 GSUv t  GSLv t

 
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 
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 
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 pi t

 1rCV t

 2rCV t 2inV
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tank current

 
rCv t

Resonant 
tank voltage

 The net electric quantity can be calculated from the capacitor voltage at t1 and t2



net neg posQ Q Q 

   1 2r rnet s C CQ C V t V t   

in net sw inP Q F V

 36 302 46 83 350 268 WinP n k     



 In a half-bridge topology, the average voltage across the resonating capacitor is

 Owing to symmetry of the waveform, we can define the two voltages 

Adjusting the Output Power

2
inV

 2rCV t

 
rCi t

Resonant 
tank current

 
rCv t

Resonant 
tank voltage

 1rCV t

   1 2
2 2r r

in in
C C

V V
V t V t  

   1 2r rC C inV t V t V 

 The feedback loop can set the peak voltage and deduce the valley voltage

   1 2r rC sen in CV t k V V t 
valley peak



 NXP’s combo controller implements a proprietary bang-bang charge control scheme

Practical Implementation with TEA2017

 Absorbing current from the feedback pin adjusts resonating peak voltage setpoints

 The optocoupler average current is regulated at 80 µA for best standby power

Low power
High power

setpoints



 A SIMPLIS model helps understand how setpoints are modulated in values

Modeling the Modulator Section

Feedback current

Power
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 The modulator imposes a small-signal gain
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 The charge control scheme simplifies the control-to-output transfer function

An Easier-to-Compensate Converter
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A 12-V/50-A Demonstration Board

 Typical application of the TEA2017 in a 600-W demonstration board – UM11613

Compensated divider

Resonant
capacitor
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 Fairchild – now onsemi – patented a technique based on charge control

 The resonating current is integrated and supplemented with an artificial ramp

 The resulting waveform is then classically compared with the error voltage

Integrating the Primary Current

A current transformer provides the current information

https://www.onsemi.com/products/power-management/ac-dc-power-conversion/offline-controllers/ncp4390

NCP4390



 It is possible to run a SIMPLIS simulation with the same LLC converter

 The converter is stabilized to crossover at 1 kHz with a 70° phase margin

Checking the Frequency Response



 The frequency response, regardless of the input voltage or the load does not change

 Phase margin is comfortable and obtained with a simple type 2 compensator

An Easier-to-Compensate Converter

Loop gain, different input voltages

7.2 AoutI 

420 V

420 V

350 V

350 V

m

cf

m

cf

385 VinV 

Loop gain, different output currents
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1 AoutI 



High-Power Half- or Full-Bridge Control

 The controller is located in the secondary side for easier synchronous rectifiers control

NCP4390 Direct observation of Vout

 Directly drives sync rectifies with 
the appropriate timing

 Can easily drive a full-bridge LLC

 Need transformers to drive and 
bring primary current to sec. side

FAN3225

https://www.onsemi.com/pub/collateral/evbum2726-d.pdf
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 The NCP13992 observes the resonating current integrated by capacitor Cr

 A cycle-by-cycle control adjusts the on-time to meet the peak current setpoint

 A digital core mirrors the on-time with a 10-ns resolution to drive the low-side switch

Current-Mode Control Operations

Counter

Hi-frequency
clock

D0 Dn

Digitized ton

duration

stop
+

-

 CSv t

 errv t

Next cycle

reset

A digital core replicates ton for an exact 50% operation

https://www.onsemi.com/products/power-management/ac-dc-power-conversion/offline-controllers/ncp1399



 It is possible to emulate the on-time replication via an analogue subcircuit

 Symmetry between timings is obtained with a simple capacitor-based ramp generator

Ac Response of the Current-Mode-Controlled LLC

N:1:1
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• A type 2 compensator is 
sufficient

• Current reading 
requires a simple 
capacitive divider



 The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin

 Despite line and load variations, the loop gain remains similar

A Stable Response across all Operating Conditions
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Typical Application Schematic of NCP13992

 The part observes the resonating current via a capacitive differentiator on pin CS
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Time-Shift Control of LLC Converters

 The controller inserts a pause before the 0-A crossing point of the resonating current

 For ZVS operations, the resonant current lags the half-bridge voltage

 The feedback loop modulates the delay and adjusts the output power

C. Adragna et al., Digital Implementation and Performance Evaluation of Time-Shift-Controlled LLC Resonant Half-Bridge Converter, Applied Power Electronics Conference, Fort Worth, 2014



Modifying the Frequency Modulator

 It is possible to insert a delay by pausing the charge/discharge current

 The pause duration depends on the resonating current approaching the 0-A point

+

-

CMP

charge

discharge
3 V/1 V

Add extra 
logic gates

 50% duty ratio naturally guaranteed

 Need to set the min/max switching frequencies

Vdd

STCMB1



Internal Circuitry for the Half-Bridge Driver

 The STCMB1 features automatic dead-time management for ZVS operation



SIMPLIS Simulation of the Time-Shifted-Controlled LLC

Time-shifted oscillator Deadtime
generation

Current modulation

 A delay is inserted by modulating the charge/discharge current of the timing capacitor

 The feedback current modulates the delay and the switching frequency indirectly

 A simple type 2 compensator is enough to stabilize the converter

 Current sensing can be implemented via a simple resistance or a capacitive divider

36 V/7 A



Typical Operating Waveforms

 The pause in the charge/discharge process is clearly visible in this 36-V LLC converter

0 A
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tCi t

 Cv t

0 A 0 A ri t

Timing capacitor
current

wait
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Time-Shift-Controlled Compensated LLC Converter

 The converter is compensated for a 1-kHz crossover frequency with a 60° phase margin

 The response is stable at various conditions but shows some variability in crossover

7.2 AoutI 

420 V

350 V

m

cf

420 V

350 V

Loop gain, different input voltages Loop gain, different output currents
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Combining LLC Control and PFC in a Combo Chip

 The controller includes a PFC and the time-shift control section
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An Overview of Commercially-Available LLC Controllers

BrandPackage
Combo 
LLC+PFC

Time-
Shifted 
Control

Current-
Mode 

Control

Charge 
Control

Variable-
Frequency 

Control

High-
Voltage 
Drivers

Part-
Number

SO-16NCP13992

SO-16NCP4390

SO-16TEA2017

SO-16TEA19161

SO-20WSTCMB1

SO-16L6699

SO-16HR1002A

SO-20HR1211

SO-20ICE2HS01G

SO-8IRS27951



Conclusion

 An LLC converter operated in variable-frequency mode exhibits a complicated ac response

 It is difficult and perilous to maintain a safe phase margin depending on conditions

 Crossover frequency is constrained to modest values

 The charge-controlled LLC converter offers a simpler and predictable ac response

 A simple type 2 compensator is enough to ensure reliable operations

 High crossover frequencies become possible with good margins

 Variations around this theme exist and bear different names

 Current-mode control also exists and offers interesting characteristics

 Time-shifted-controlled LLC brings a different scheme and simplifies compensation


