OMICRON Lab Webinar

Using WDS to Design:

- **1 Analog Isolated Flyback**
- 2 Digital Buck

© Biricha Digital Power Ltd Parkway Drive Sonning-on-Thames RG4 6XG - UK www.biricha.com

Nov 2014

www.biricha.com

1

Forthcoming Workshops, Dates & Location

- Analog PSU Design Workshop
 - Dec 3rd to 5th and March 17th to 19th
 - Garching Germany

- Digital Power Workshop (Microchip dsPIC family)
 - Feb 10th to 12th 2015
 - Karlsruhe, Germany
- Digital PFC Workshop (TI C2000)
 - Feb 24th to 26th
 - Garching, Germany
- Digital Power Workshop (TI C2000)
 - April 21st to 23rd 2015
 - Garching, Germany

Abridged DPS Workshop Syllabus

• Day 1: Starting with Embedded MCU Programming for Analog Engineers

- MCHP MCU 16 or TI C2000 family's development tools & features
- Use Biricha Digital's libraries to run MCU code with minimal programming
- Programming the MCU for digital power (Interrupts, Templates, PWMs etc)
- Programming exercises and Labs (PWMs/ADCs/Interrupts etc)

Day 2: Voltage Mode PSU Design

- Step by step design of digital power supplies
- Stable Analogue and digital power supply Design
- Discrete time control theory, Z transforms & digital convolution
- Avoiding stability issues in your digital power designs
- Voltage mode PSU labs

• Day 3: Digital Peak Current Mode

- Analogue current mode control
- Digital peak current mode and slope compensation
- Current mode PSU labs

Abridged PFC Workshop Syllabus

• Day 1: Starting with Embedded MCU Programming for Analog Engineers

- TI C2000 family's development tools & features
- Use Biricha Digital's libraries to run MCU code with minimal programming
- Programming the C2000 for digital power (Interrupts, Templates, PWMs etc)
- Programming exercises and Labs (PWMs/ADCs/Interrupts etc)

Day 2: Analog PFC Design

- Basic principles and foundations
- Understanding EU regulations (EN-61000-3-2)
- Stable analog voltage loop, current loop and voltage feed forward filter design
- Using the PLD design software to design analog PFCs down to component level
- Analog Labs

BIRICHA DIGITAL

• Day 3: Digital PFC

- Step-by-step block level digital PFC (single phase and interleaved)
- Easy digital PFC implementation using Biricha's digital power libraries
- Stable digital control loop design
- Digital PFC labs (single phase and interleaved)

Abridged Analog PSU Design Workshop Syllabus

- Day 1: Introduction PSU Design, Control Theory, Test and Measurement
 - Fundamentals of power supply design
 - Frequency response analysis
 - Hands-on labs including:

- Stable and robust voltage mode PSU design on a Forward type topology
- Learning how to perform accurate loop measurement and stability analysis using a vector network analyser (each group will have their own network analyzer to use)
- Day 2: Peak Current Mode Control
 - Peak current design with state of the art modern ICs and controllers
 - Dealing with sub harmonic oscillations and slope compensation calculations
 - Hands-on labs including:
 - Designing a stable current mode power supply on Forward/Flyback topologies
 - Current mode controller transient response and loop measurement tests
- Day 3: Isolated Power Supply Design
 - Stable isolated PSU design and analysis
 - Designing with opto-couplers and programmable references (e.g. TL431)
 - Hands-on labs including:
 - Designing a stable opto-isolated power supply on Forward/Flyback topologies
 - Hands-on frequency response measurement of optoisolated compensators

Introduction to WDS

- WDS has been designed as the ultimate toolbox for the power supply design engineer.
 - Designs and stabilises analog and digital PSU control loops in minutes
 - Automatically calculates poles and zeros as well as component values of the worlds most popular topologies
 - Sophisticated control algorithms stabilise analog and digital power supplies
 - Automatic coefficient calculations for floating point, 32 bit and 16 bit processors
 - Automatic compensator design for isolated power supplies with TLx431/LMx431 and a host of industry standard optocouplers
 - Simulations in time domain, frequency domain and ability to superimpose real measurements on simulated data

Design Example Using WDS

Design Example Using WDS

Converter Specification			
Topology: But	ck		•
Output voltage isolated fro	om primary side:	Non Isolated	-
Input Supply:			
Maximum		12	V
Nominal		12	V
Minimum		12	V
Output:			
Maximum Current		2	Α
Voltage		3.3	V
Output voltage ripple / oversi	hoot:		
Voltage Ripple (pk-pk)		0.5	%
Voltage Ripple (pk-pk)	16.5		mV
Load Step from 100% to		50	%
Voltage Overshoot	660	660 🔻	mV
Demand Efficiency	85	85 🗸	%

Control Mode: Voltage Image: Analog Control Digital Control Switching Frequency 200 kHz Sampling Frequency n/a rkHz Pure Time Delay n/a x Tsamp Crossover Frequency 20 10 kHz Phase Margin 55 Degrees	Control Parameters					
Switching Frequency 200 kHz Sampling Frequency n/a kHz Pure Time Delay n/a x Tsamp Crossover Frequency 20 10 kHz	Control Mode: Volt	Control Mode: Voltage 🗸				
Sampling Frequency n/a n/a kHz Pure Time Delay n/a x Tsamp Crossover Frequency 20 10 kHz		Analog Control	Digital Control			
Pure Time Delay n/a x Tsamp Crossover Frequency 20 10 v kHz	Switching Frequency		200	kHz		
Crossover Frequency 20 10 V kHz	Sampling Frequency	n/a	n/a 👻	kHz		
	Pure Time Delay		n/a	x Tsamp		
Phase Margin 55 Degrees	Crossover Frequency	20	10 👻	kHz		
	Phase Margin		55	Degrees		

Design Example Using WDS

Primary Switch					
"On" Resistance	<	31.625	4.8	•	mΩ
Rise Time	<	25	25	•	ns
Fall Time	<	5	25	•	ns
Parasitic Cap (Coss)	<	1285.495	580	•	pF
Peak Switch Voltage		12.4			V
Average Switch Curre	nt	0.62			Α
RMS Switch Current		1.118			Α
Peak Switch Current		2.301			Α
Conduction Losses		0.006			W
Switching Losses		0.147			W
Recommended values	for c	alculations			

Diode/Switch			
Forward Voltage Drop	0.6	0.4	▼ V
Peak Voltage Stress	11.989]	v
Average Current	1.38]	Α
RMS Current	1.667]	Α
Peak Current	2.301]	Α
Conduction Losses	0.552]	w
Recommended values for	calculations		

Design Example Using WDS

Output Filter Inductor			
Specified Ripple (pk-pk)		25 👻	%
Specified Ripple (pk-pk)	0.5		Α
L0 Inductance	26.52	22 💌	μH
L0 DCR		70 🔻	mΩ
Actual % Ripple (pk-pk)	30.1		%
Actual Ripple (pk-pk)	0.603		Α
Peak Current	2.301		Α
Average Current	2		Α
Power Dissipation	0.28		W
DCM/CCM Boundary	0.301022		Α
Recommended values for c	alculations		

Output Filter Capacitor			
C0 Capacitance	500.277	440	ΨF
C0 ESR	26.905	34	mΩ
C0 ESR Zero	10638.699		Hz
Specified Overshoot	660		mV
Actual Overshoot	49.643		mV
Specified Ripple (pk-pk)	16.5		mV
Actual Ripple (pk-pk)	20.107		mV
RMS Current	0.17		Α
Ripple Current (pk-pk)	0.591		Α
Peak Voltage	3.32		V
Power Dissipation	0.988		mW

Recommended values for calculations

Calculated capacitance is based on the voltage ripple requirement to meet both overshoot and voltage ripple specifications.

BIRICHA DIGITAL

www.biricha.com

Design Example Using WDS

PWM Parameters		
PWM Ramp Height	1.8	V

Controller Poles and Zeros			
Automatic placer	ment 💿 Mar	nual placement	
Pole at the origin	3979.289	3979.289 🔻	. Hz
First Pole	10638.699	10638.699 -	Hz
Second Pole	100000	100000 -	. Hz
First Zero	4860.243	4860.243	, Hz
Second Zero	1601.229	1601.229	. Hz

Error Amplifier					
Reference Voltage		2.55	•	V	
Sampling Divider					
Desired current through div	vider	0.15	•	mA	
R1	5	10	•	kΩ	
Rb	34			kΩ	
Actual current through pd	0.075			mA	
Controller Component Values					
R2	15.074	14	•	kΩ	
R3	0.163	0.18	•	kΩ	
C1	2.172	2.2	•	nF	
C2	9.78	10	•	nF	
C3	1.827	1.5	•	nF	
Actual Controller Poles and Zeros					
Pole at the origin	4301.485			Hz	
First Pole	12746.175			Hz	
Second Pole	88419.413			Hz	
First Zero	5167.368			Hz	
Second Zero	1563.408			Hz	

Analyzing Your Converter in Frequency Domain

 Measurement setup with a network analyzer

Results from Exercise 1c

Results from Exercise 1c

Results from Exercise 1c

Real Life Design Example 1: Common Emitter with RPULLUP = 2.2k Ω

- Now that we have got our component values we can test *the compensator* to make sure that:
 - Our programmable reference is stable
 - Compensator poles and zeros are where we think they are
 - Opto bandwidth is not messing up our loop
 - Opto is being operated in the linear region

We can now run a lab to make sure the compensator works perfectly before moving on to our real power supply

Exercise 3b: Isolated Compensator Design Using WDS

- Exported simulation into Bode Analyser Suite is almost a perfect match
 - This is a stable compensator with poles and zeros at correct locations

Results from Exercise 3c

Results from Exercise 3c

Results from Exercise 3c

BIRICHA DIGITAL

Forthcoming Workshops, Dates & Location

- Analog PSU Design Workshop
 - Dec 3rd to 5th and March 17th to 19th
 - Garching Germany
- Digital Power Workshop (Microchip dsPIC family)
 - Feb 10th to 12th 2015
 - Karlsruhe, Germany
- Digital PFC Workshop (TI C2000)
 - Feb 24th to 26th
 - Garching, Germany
- Digital Power Workshop (TI C2000)
 - April 21st to 23rd 2015
 - Garching, Germany

Abridged DPS Workshop Syllabus

• Day 1: Starting with Embedded MCU Programming for Analog Engineers

- MCHP MCU 16 or TI C2000 family's development tools & features
- Use Biricha Digital's libraries to run MCU code with minimal programming
- Programming the MCU for digital power (Interrupts, Templates, PWMs etc)
- Programming exercises and Labs (PWMs/ADCs/Interrupts etc)

Day 2: Voltage Mode PSU Design

- Step by step design of digital power supplies
- Stable Analogue and digital power supply Design
- Discrete time control theory, Z transforms & digital convolution
- Avoiding stability issues in your digital power designs
- Voltage mode PSU labs

Day 3: Digital Peak Current Mode

- Analogue current mode control
- Digital peak current mode and slope compensation
- Current mode PSU labs

Abridged PFC Workshop Syllabus

• Day 1: Starting with Embedded MCU Programming for Analog Engineers

- TI C2000 family's development tools & features
- Use Biricha Digital's libraries to run MCU code with minimal programming
- Programming the C2000 for digital power (Interrupts, Templates, PWMs etc)
- Programming exercises and Labs (PWMs/ADCs/Interrupts etc)

Day 2: Analog PFC Design

- Basic principles and foundations
- Understanding EU regulations (EN-61000-3-2)
- Stable analog voltage loop, current loop and voltage feed forward filter design
- Using the PLD design software to design analog PFCs down to component level
- Analog Labs

BIRICHA DIGITAL

• Day 3: Digital PFC

- Step-by-step block level digital PFC (single phase and interleaved)
- Easy digital PFC implementation using Biricha's digital power libraries
- Stable digital control loop design
- Digital PFC labs (single phase and interleaved)

Abridged Analog PSU Design Workshop Syllabus

- Day 1: Introduction PSU Design, Control Theory, Test and Measurement
 - Fundamentals of power supply design
 - Frequency response analysis
 - Hands-on labs including:

- Stable and robust voltage mode PSU design on a Forward type topology
- Learning how to perform accurate loop measurement and stability analysis using a vector network analyser (each group will have their own network analyzer to use)
- Day 2: Peak Current Mode Control
 - Peak current design with state of the art modern ICs and controllers
 - Dealing with sub harmonic oscillations and slope compensation calculations
 - Hands-on labs including:
 - Designing a stable current mode power supply on Forward/Flyback topologies
 - Current mode controller transient response and loop measurement tests
- Day 3: Isolated Power Supply Design
 - Stable isolated PSU design and analysis
 - Designing with opto-couplers and programmable references (e.g. TL431)
 - Hands-on labs including:
 - Designing a stable opto-isolated power supply on Forward/Flyback topologies
 - Hands-on frequency response measurement of optoisolated compensators

Important Notice

BIRICHA DIGITAL

All material presented in this document, associated software, exercises, appendices and oral presentations made as part of Biricha Digital Power Ltd's workshops and seminars are for educational purposes only and are not intended for production or commercial applications and may contain irregularities and defects or errors. Furthermore, none of the material has been tested or certified by any government agency or industry regulatory organization or any other third party organization.

Biricha Digital Power Ltd makes no warranties or representations, express, implied or statutory, including any implied warranties of merchantability, fitness for a particular purpose, lack of viruses, lack of patent infringements, accuracy or completeness of responses and lack of negligence. Prior to using, incorporating or distributing any of the material that has been presented to you as part of this workshop in any commercial product, you must thoroughly test the product and the functionality in that product and be solely responsible for any problems or failures.

In no event shall Biricha Digital Power Ltd, or any applicable licensor, be liable for any special, indirect, incidental, or punitive damages, however caused, arising in any way out of your use of the material presented in this workshop. These excluded damages include, but are not limited to, cost of removal or reinstallation, procurement of substitute goods or services, outside computer time, labour costs, loss of data, loss of goodwill, loss of profits, loss of savings, loss of use or interruption of business or other economic loss.