

# Loop Gain Measurements

#### **OMICRON** Lab Webinar Week 2015



## Webinar Hints

#### Activate the chat function



### Agenda

- Closed loop transfer functions & loop gain
- Stability definition and verification
- Voltage injection method
- Injection signal level size
- Choosing the correct injection point
- Live loop gain measurement





## The Closed Loop Feedback System

**Example: Buck Converter** 



#### **Closed Loop Reference to Output**

$$G_{ref-out,CL}(s) = \frac{\hat{v}_{ref}(s)}{\hat{v}_{out}(s)} = \frac{G_c(s)G_{PWM}(s)G_{vd}(s)}{1 + G_c(s)G_{PWM}(s)G_{vd}(s)}$$

Loop Gain  $T(s) = G_c(s)G_{PWM}(s)G_{vd}(s)$ = product of all gains around the loop

$$G_{ref-out,CL}(s) = \frac{T(s)}{1+T(s)}$$

If  $T(s) \gg 1$ , then  $G_{ref-out,CL}(s) \approx 1$ . This means the output follows the reference  $\rightarrow$  Goal of the control loop



## **Closed Loop Input to Output**

Open loop input to output transfer function  $G_{in-out}(s)$ 

Closing the feedback loop  $\hat{v}_{out} = \hat{v}_{in} \cdot G_{in-out}(s) - \hat{v}_{out} \cdot T(s)$ 

#### therefore

$$G_{in-out,CL}(s) = \frac{G_{in-out}(s)}{1+T(s)}$$

If  $T(s) \gg$  then  $G_{in-out,CL}(s) \ll$  $\rightarrow$  Distortions at the input are rejected





#### The Design Rules

- For good output regulation we need high loop gain
- For T(s) < 1 the feedback has no effect
- High loop gain for all frequencies is not possible and not desired



### Stability of the Closed Loop System

Transfer functions of the closed loop:

$$G_{ref-out,CL}(s) = \frac{T(s)}{1+T(s)} \qquad \qquad G_{in-out,CL}(s) = \frac{G_{in-out}(s)}{1+T(s)}$$

What happens if T(s) = -1?

- $\rightarrow$  Closed Loop Transfer function will tend to get "infinite"
- $\rightarrow$  Behavior of the loop is no longer defined (unstable)

By checking the loop gain T(s) we can check if the closed loop system will be stable or not.

Test: How much distance does T(s) have towards -1



#### The Phase Margin Test

(A special case of the general Nyquist stability criterion) If phase margin  $>0^{\circ} \rightarrow$  the closed loop system is "stable"





#### How much Phase Margin do we need?

Example: Voltage-mode Buck Converter Reference to Output Step (Simulation)



## Why Measuring Stability?

- Ensure stable operation at all operating points and different environmental conditions
- Low phase margin can add significant ringing and degrade system performance
- Especially linear regulators should show enough stability margin when powering clocks, opamps or ADCs
- Verify your simulation results





## Measuring a Transfer Function

Bode 100 measures the transfer function  $\underline{H}_2$  from CH1 to CH2



Note: Use the external reference function of the Bode 100 to enable CH1 input!



## Measuring Loop Gain (Voltage Injection)

Loop gain is measured by "breaking" the loop at the injection point and inserting an injection resistor.

The voltage loop gain is measured by  $T_v(s) = \frac{v_y(s)}{v_x(s)}$ 





## **Selecting the Injection Point**

To keep the measurement error small we need to find a suitable injection point that fulfills the two conditions:



Generally well suited points:

- Output of a voltage source
- Input of an operational amplifier
- Output of an operational amplifier
- Best between two opamps





#### Reading Phase Margin from Measurement

Phase Margin is read directly from the measurement!  $\varphi_m$  is the distance to 0° and NOT to -180°

Reason: We measure in the closed loop system  $\rightarrow$  our signal will run through the inverting error amp and get an additional 180° phase shift.  $\rightarrow$  The instability point is at +1!

Theoretical open loop gain  $T_o(s)$ 



Measured loop gain  $T_{v}(s)$ 



## **Injection Signal Level**

Control loop is designed based on small signal models (linear)
→ Measurement signal must be a "small signal"
Note:
Measurement result must be independent of signal size!

How to Check?

- 1. Choose an injection signal level and measure
- 2. Reduce the injection signal by e.g. 10dB

→ If the result has changed, do **further reduce** until the result stays constant!



#### **Shaped Level**

- Correct results and clean curves?  $\rightarrow$  use the "shaped level"!
- Low level at sensitive frequencies and high level where you need more disturbance power.





#### In-system measurements are important



- The input filter can influence the stability (Middlebrook)
- The load influences the stability margin

Always measure the loop gain under **all expected load conditions** and with the **input filter** connected.



# Choosing the right injection point

- 1. Linear Regulator (Picotest)
- 2. Buck Converter (LT6811)
- 3. Flyback Converter (LT3758)
- 4. LED Driver (LT3755)
- 5. SEPIC Converter (LT3758)





#### VRTS 1.5 board from Picotest

Linear regulator with 3.3V output voltage.







OMICRON

#### Step Down Converter: Demo 1750A





#### Sepic Converter: Demo 1342B







## Flyback Converter: Demo 1412A





### High Voltage LED Driver: Demo 1268b-A



#### Live Measurements



- LED Driver
- Flyback Converter



## What if you can't break the feedback loop?

Loop stability can be derived from an output impedance measurement

- → Non-Invasive Stability Measurement (NISM)
- → Find out more at: <u>www.picotest.com</u>







#### Do you want to measure more?

Measure:

- Loop Gain
- Output Impedance (NISM)
- PSRR
- Input Impedance and more...

Send us an E-Mail with subject **VRTS** and we will send you a board for free.



You can find all our power supply appnotes at: <u>https://www.omicron-lab.com/bode-100/application-notes-know-how/application-notes.html#3</u>





#### Feel free to ask questions via the chat function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: info@omicron-lab.com

# Thank you for your attention!

