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Webinar Hints

• Please mute your microphones 

to avoid echoes

• Feel free to post questions 

anytime using the chat function

• Please post your questions to 

Bernhard Baumgartner
Send questions via chat 

to Bernhard Baumgartner

Please mute yourself by 
clicking on this icon!

Activate the chat function

We will record the 
presentation such that you 
can view it again later
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Agenda

• Why do we analyze passive components

• How to measure component impedance

• A detailed look at a capacitor

• Inductor and transformer

• Filter simulation vs. real world

• Summary
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Passive Components

• Essential parts in analog circuits

• Inductor and capacitor used e.g. to store energy or to 

create filter circuits

Inductor: 𝑣 𝑡 = 𝐿
𝑑𝑖 𝑡

𝑑𝑡
𝑋𝐿 = 𝜔𝐿

𝑉

𝐼
= 𝑍𝐿 = 𝑗𝜔𝐿

Capacitor: 𝑖 𝑡 = 𝐶
𝑑𝑣 𝑡

𝑑𝑡
𝑋𝐶 =

−1

𝜔𝐶

𝑉

𝐼
= 𝑍𝐶 =

1

𝑗𝜔𝐶
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Capacitor:
• Plates are resistive

• Rolling of foils creates inductance

• Insulator not lossless

Theory and Reality

• Theoretically inductor and capacitor are purely reactive

elements  No resistive behavior and therefore lossless

• In reality parasitics can strongly influence the real 

behavior especially at higher frequencies

Examples:

Inductor:
• Wire has resistance

• Windings form electric field

• Core is not lossless
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Equivalent Circuits

• Are used to model the real behavior of the components

• Different complexity of models

− 1st order models are valid for one frequency

▪ Single Frequency Mode in BAS calculates R, L and C

▪ Frequency Sweep Mode calculates R, L and C over frequency
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Equivalent Circuits

• Higher complexity models are valid for a frequency range

− 2nd Order equivalent circuits for inductor and capacitor

− 3rd Order models (e.g. quartz crystal or piezo element)

• Parameter identification requires manual 

work or e.g. curve-fitting procedure

≙ ≙

see Application Note: 

Equivalent Circuit Analysis of Quartz Crystals

https://www.omicron-lab.com/application-notes/ 
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Bode 100 Impedance Measurement Methods

• Direct Measurements

− One-Port Reflection

− Impedance Adapter (3-port technique)

− External bridge (e.g. high impedance bridge)

• Indirect Measurements (via Gain)

− Shunt-Thru (2-port technique)

− Series-Thru (2-port technique)

− Voltage-Current Gain (3-port technique)
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Direct Measurement Methods
One-Port

Recommended for 0.5 Ω - 10 kΩ

Impedance Adapter

Recommended for 20 mΩ - 600 kΩ

External Bridge / Coupler

Range depends on bridge
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Indirect Measurement Methods
Series-Thru

Recommended for 1 kΩ < 10 MΩ

𝑍𝐷𝑈𝑇 = 100 Ω ⋅
1 − 𝑆21
𝑆21

Shunt-Thru

Recommended for 1 mΩ - 10 Ω

𝑍𝐷𝑈𝑇 = 25Ω ⋅
𝑆21

1 − 𝑆21

𝐺𝑎𝑖𝑛 =
𝑉𝐶𝐻2
𝑉𝐶𝐻1

=
𝑉

𝐼
= 𝑍𝐷𝑈𝑇

Voltage Current Gain
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Impedance Range Overview
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Why is it important to measure capacitors?

• A capacitor is NEVER just a capacitor

• Capacitor ESR influences the phase margin of power supplies

• Capacitor ESR influences the output ripple at the switching 

frequency of a SMPS

• ESR can change over Frequency

• Capacitors are inductors above 

their resonance frequency
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What does the data sheet tell us?

220 µF aluminum capacitor

C = 220µF (± 20%)

𝐸𝑆𝑅 =
tan 𝛿

𝜔𝐶
=

0.12

2𝜋 ⋅ 120𝐻𝑧 ⋅ 220µF
= 0.72 Ω@ 120 𝐻𝑧



Page 14Smart Measurement Solutions®

This is what the measurement tells us
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Calibration

Open

Short Load
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User Calibration / Probe Calibration

• User Calibration (User Range Calibration)

Calibrates at exactly the frequencies that are currently measured

+ No interpolation, suitable for narrowband probes

• Probe Calibration (Full Range Calibration)

calibrates at pre-defined frequencies and interpolates in-between

+ Calibration does not get lost when frequency range is changed
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Detailed Example available
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see Application Note: 

Capacitor ESR Measurement with Bode 100 and B-WIC 

https://www.omicron-lab.com/application-notes/ 
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Fitting Model to Measured Impedance

• Various methods

available

• We use curve-fitting 

• A Preview tool is 

available on 

request
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Simulation vs. Measurement
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Voltage sensitivity of capacitors

see Application Note: 

DC Biased Impedance Measurements 

https://www.omicron-lab.com/application-notes/ 
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Why should we measure inductors?

• An inductor is NEVER just an inductor

• AC resistance <> DC resistance 

− skin effects 

− “Eddie Currents”

• Inductors have resonance frequencies

• Inductors with magnetic cores can have core losses 
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What does the data sheet tell us?

33 µH shielded power inductor

H = 33µH (± 20%) @ 1 kHz
𝑅𝐷𝐶=0,049 𝛺 (𝑡𝑦𝑝.)
𝑅𝐷𝐶=0,057 𝛺 (𝑚𝑎𝑥.)
fres = 11 MHz
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This is what the measurement tells us
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Flyback Transformer Leakage Inductance

• Not all flux generated by the primary 
winding is coupled to the secondary 
winding

− some flux leaks

− some contributes to core losses

• Represented by a series inductance in 
the circuit

• Leakage inductance creates a voltage 
spike when turning off current through 
primary side (flyback converter)
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Measuring Leakage Inductance

Leakage inductance is measured by shorting all other 

windings except the primary winding
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 Leakage inductance is not constant over frequency
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LC Filter Bode Diagram

Passband

Resonance

(Double-pole)

Stopband 

-40dB/Decade

-180° Phase

Simulation in LTSpice:
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LC Filter Test board

Measuring the voltage transfer function 𝐻 𝑗𝜔 =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
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Measurement vs. Simulation

Measurement

Simulation

• Stopband is 

different

• Phase does not 

reach -180°

• Second resonance 

at 30 MHz

 parasitic effects
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Reducing Output Ripple

 2 x 10µF ceramics adds 20dB attenuation at 300 kHz
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Summary

• Component parasitics are 

important to understand real life

circuit behavior

• Models considering parasitics

allow better simulation

• Measuring components can tell us more

than the data sheet says



Thank you for your attention!

Feel free to ask questions via the chat function...

If time runs out, please send us an e-mail and we will follow up.

You can contact us at: info@omicron-lab.com

mailto:info@omicron-lab.com

