

Dielectric Spectroscopy of Solid Insulators

OMICRON Lab Webinar Series 2020

2020-05-04

Britta Lang (former Pfeiffer)

- Studied electrical engineering at University of Applied Sciences Dortmund, Germany
- Working at OMICRON electronics since 2007
- Working at OMICRON Lab since 2014
 - Application expert
 - Project management
- Contact
 - britta.lang@omicron-lab.com
 - https://meet-omicron.webex.com/meet/britta.lang

Markus Pfitscher

- Completed electrical engineering college in 1993
- Working at OMICRON Lab since 2013 focusing on:
 - Sales & Business Development
 - Product Management

- Contact:
 - markus.pfitscher@omicron-lab.com
 - https://meet-omicron.webex.com/meet/markus.pfitscher

Tobias Schuster

- Completed electrical engineering college in 2013
- Studied Industrial Engineering and Management
- Working at OMICRON Lab since 2015 focusing on:
 - Technical Support
 - Applications
 - Sales
- Contact:
 - tobias.schuster@omicron-lab.com
 - https://meet-omicron.webex.com/meet/tobias.schuster

- Theory and measurement methods
- Introduction dielectric sample holder DSH 100
- Measurement example using the DSH 100

Dielectric Spectroscopy of Solid Insulators

Theory and measurement methods

Dielectric Analysis Basics

Dielectric Material Analysis: Definitions

• There are lot of terms used for the description of a dielectric material:

Dielectric Constant

Permittivity *E*

"Permittivity is a measure of how an electric field effects and is effected by a dielectric material." (in simple words)

- 8
 - Permittivity of material
 - Describes the interaction of a material with an external electrical field
- *E*₀
 - Permittivity of space
 - Constant value 8.85x10⁻¹² F/m
 - Describes the electrical field generated in vacuum

Relative Permittivity ε_r

• The absolute material permittivity $\boldsymbol{\varepsilon}_r$ is relative to the permittivity of free space $\boldsymbol{\varepsilon}_o$

- ε_r' indicates how much energy from an external electric field is <u>stored</u> in a dielectric material
- ε_r" indicates the <u>losses</u> within the dielectric material when an external electric field is applied.
- ϵ_r " is usually much smaller than ϵ_r ' and includes the effects of both dielectric loss and conductivity.

Dielectric Losses $tan(\delta)$

• The ratio of lost energy (ε_r) to stored energy (ε_r) is the relative losses of a dielectric material

$$\tan(\delta) = D = \frac{\varepsilon_r''}{\varepsilon_r'} = \frac{1}{Q} = \frac{Energy \ lost \ per \ cycle}{Energy \ stored \ per \ cycle}$$

- Q is the quality factor
- Used terms for the relative losses of a dielectric material are:
 - Dissipation factor D
 - Dielectric losses tan(δ)

Dielectric Spectroscopy Techniques

- The measurement technique for dielectric material analysis depends on the frequency range to measure
- For a frequency range from 10⁻⁶ Hz to 10⁸ Hz the following two measurement techniques can be used:

Frequency Domain Spectroscopy (FDS)

FDS Principle:

- Measures $tan(\delta)$ at different frequencies:
 - Apply sinusoidal voltage of different frequencies f1, f2, ... to a dielectric material e.g. located in a parallel electrodes test cell
 - Determine $tan(\delta)$ at the frequencies f1, f2, ...

Frequency Domain Spectroscopy (FDS)

- Advantage of FDS
 - Fast and accurate at high frequencies
 - Resistant to disturbances
- Disadvantage of FDS
 - Very slow at low frequencies

Frequency	Duration of 1 sine wave
5000 Hz	0,2 ms
1000 Hz	1 ms
50 Hz	20 ms
1 Hz	1 s
0.1 Hz	10 s
10 mHz	100 s
1 mHz	16,7 min
0.1 mHz	2,7 h
10 µHz	27 h

Time Domain Spectroscopy

- The time domain spectroscopy used in the SPECTANO 100 is called PDC measurement (Polarization Depolarization Current)
- PDC Principle
 - Apply a voltage step to a dielectric material e.g. located in a parallel electrodes test cell
 - Measure the charge current at times t₁, t₂, ...
 - Calculate the dielectric properties like ε , c, tan(δ) at the corresponding $f_1 = \frac{1}{t_1}$; $f_2 = \frac{1}{t_2}$... using the Fourier transformation

Time Domain Spectroscopy

- Advantage of PDC
 - Fast and accurate at low frequencies
- Disadvantage of PDC
 - Inaccurate at high frequencies

	Advantages	Disadvantages
PDC	 Fast and accurate at low frequencies 	 Inaccurate at high frequencies
FDS	 Fast and accurate at high frequencies 	Very slow at low frequencies

Combination of FDS and PDC

Dielectric Polarization

• When a dielectric material is placed in an external electrical field charged particles are displaced. This process is called **dielectric polarization**.

Polarization processes

• Depending on the frequency different polarization types occur

Why is dielectric material analysis in comparison to common analysis methods as $tan(\delta)$ 50 Hz so important?

$Tan(\delta)$ 50 Hz Analysis = Common "type" of insulation material measurement

Importance of Dielectric Material Analysis

Importance of Dielectric Material Analysis (cont.)

Importance of Dielectric Material Analysis (cont.)

red: bad material = aged
blue: good material = normal (dry)
green: probe = wet and thus inaccurate/faulty

- Separation of effects due to large frequency range
- Detailed analysis possible

Factors influencing the dielectric response

Possible influence factors:

- Temperature
- Humidity or moisture
- Homogeneity
- Conductivity e.g. oil
- Aging byproducts
- Viscosity e.g. during curing
- Structure
- kind of influences depend on material

Typical Dielectric Material Curves

Pressboard disk before & after pressing with 10kg weights for 2 month

Epoxy resin curing process

OMICRO

Why are C and ε dielectric material properties?

Tanδ for new and aged pressboard with similar moisture content at 20°C

Permittivity of aged pressboard with different moisture content at 20°C

Importance of dielectric analysis

- To detect aging or changes of dielectric material structure / composition before material is used in the field
- Aging or changes of the dielectric material can lead into
 - Wrong electrical behavior
 - Changes of electrical specification
 - Reduction of dielectric strength
 - Reduction of longevity
 - Avoid short circuits e.g. in high voltage equipment and thus faster aging
 - Reduction of humidity or temperature stability

Dielectric Material Analysis: Applications

Measures dielectric parameters like losses (tan δ), relative permittivity (ϵ) or capacitance (C) to characterize easily

Nanomaterial and material composites

Dielectrics used as insulations in cables and high voltage assets

Polymers, epoxy, insulation paper/cellulose, glasses or thin films

Insulation liquids like mineral oil or silicone

Dielectric Spectroscopy of Solid Insulators

Introduction dielectric sample holder – DSH 100

Typical Test Cell Types

- The test cell type for the dielectric material analysis depends on
 - The used dielectric spectroscopy techniques
 - Material under test (liquid, powder, solid, granulate...)

Typical Test Cell Types

TC12 Transformer Oil Test Cell (cylindrical) by OMICRON electronics

Di by

Disc electrode with guard ring by TU Munich

DSH 100 – Dielectric Sample Holder for solid material

- Cooperation project with the Tony Davies High Voltage Laboratory University of Southampton
- Test cell type

Smart Measurement Solutions®

- Disc electrode with guard ring
- Shielding mechanism included
- Disposable electrodes (usable for curing processes)
- Easy adjustment of air gap for air reference measurement
- Usable for voltages $\leq 200 V_{peak} (AC + DC)$
- Usable frequency range 5 µHz to 5 MHz
- Option: Temperature control system

Sample Holder DSH100 – Features

• Housing, connection & environmental control

- Shielding for precise measurements
- Triaxial connection for
 - Low current (pA)
 - Capacitances down to 10 pF
- Temperature control
 - Heating pad
 - PT-100 temperature sensor

Electrical Parameters

Maximum Operation Voltage (AC/DC) $\leq 200 \text{ V}_{\text{peak}}$ Maximum current (AC/DC) $\leq 50 \text{ mA}_{\text{peak}}$ Usable frequency range 5 µHz to 5 MHz

Sample thickness 0.1 mm to 20 mm

Sample size 50 mm x 50 mm to 70 mm x 70 mm

• Safety interlock mechanism

OMICRON

• Tensioner to control pressure

- Spring force:10N, 50N and 100N
- Ensures proper electrical contact
- Constant force (scaling)
- Reproduceable results
- Exchangeable design

Electrode design

Top/Input electrode: Ø 70 mm Bottom/Measurement electrode with guard ring: Ø 49 mm Guard ring width / gap: 9.5 mm / 1 mm

- Exchangeable and disposable electrodes with guard ring
- Thin multilayer Printed Circuit Board (PCB) with gold coating (1.55mm thick)
- Electrode material allows deformation for proper contact to non-flat, rigid samples
- Designed according to IEC 250 and ASTM D150-11 standards

• Electrode design

Exchangeable and cost-effective

• Spacer

Spacer for air-reference measurement thickness: 0.8 mm / 1 mm / 1.55 mm

• Option: Heating pad and temperature sensor

Environmental Conditions

Operating temperature: Operating relative humidity: Maximum altitude: -55 °C to +200 °C ≤ 95 % non-condensing 2000 m

General

Dimensions (w x h x d) Weight 165 mm x 108 mm x 118 mm 2.5 kg

Supports measurements in accordance with: ASTM D150 IEC 62631-2-1 (2018) IEC 62631-3-1 (2016)

Triaxial connectors: LEMO plug

Factors leading to a reduced accuracy

Accurate dielectric measurement results requires:

Accurate dielectric analyzer

Unique and planar sample surface

Accurate sample holder with planar, parallel electrodes

- Factors leading to a reduced accuracy
 - Electrical contact: Reasons for poor electrical contact (air pockets)
 - Sample and electrode surface
 - Uneven sample or electrode surface
 - Scratches or contaminations on the sample or electrode surface like finger-prints, dust or oxide layers
 - Sample holder design
 - Tilting of the upper electrode (usually mounted with a small fixing point)
 - Deviations of the micrometer or sample thickness

- Factors leading to a reduced accuracy
 - Stray Capacitances

• Working with dielectric material:

Dielectric Spectroscopy of Solid Insulators

Measurement example using the DSH 100

Measurement example using the DSH 100

• Measurement set up:

Thank you for your attention!

Feel free to ask questions via the Q&A function...

If time runs out, please send us an e-mail and we will follow up. You can contact us at: <u>info@omicron-lab.com</u>

